Loading…
Unique Band Structure of Pressure Induced Semiconducting State in SmS Characterized by 33S-Nuclear Magnetic Resonance Measurements
In Kondo insulators, where a small energy gap evolves only at low temperatures, it is challenging to experimentally clarify their electronic structures, especially under high pressure. In this study, we have carried out high-pressure 33S-nuclear magnetic resonance measurements on a pressure-induced...
Saved in:
Published in: | Journal of the Physical Society of Japan 2024-01, Vol.93 (1), p.1 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | eng ; jpn |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Kondo insulators, where a small energy gap evolves only at low temperatures, it is challenging to experimentally clarify their electronic structures, especially under high pressure. In this study, we have carried out high-pressure 33S-nuclear magnetic resonance measurements on a pressure-induced semiconducting phase with a small energy gap of SmS. To analyze the recovery curve of nuclear spin–lattice relaxation time T1, consisting of multiple components, the Bayesian inference was introduced. The unique temperature dependence of 1/T1 is reproduced based on a simplified rectangular band model and a periodic Anderson model, which allows to obtain parameters characterizing the semiconducting state semi-quantitatively: the bandwidths of conduction electrons and quasiparticles are much narrower and the energy gap is smaller than for SmB6, a prototypical Kondo insulator. This peculiar band structure in the small gap state may arise from the characteristics of weak correlations and relatively strong hybridization. |
---|---|
ISSN: | 0031-9015 1347-4073 |
DOI: | 10.7566/JPSJ.93.013702 |