Loading…

Fairness Hacking: The Malicious Practice of Shrouding Unfairness in Algorithms

Fairness in machine learning (ML) is an ever-growing field of research due to the manifold potential for harm from algorithmic discrimination. To prevent such harm, a large body of literature develops new approaches to quantify fairness. Here, we investigate how one can divert the quantification of...

Full description

Saved in:
Bibliographic Details
Published in:Philosophy & technology 2024-03, Vol.37 (1), p.4, Article 4
Main Authors: Meding, Kristof, Hagendorff, Thilo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fairness in machine learning (ML) is an ever-growing field of research due to the manifold potential for harm from algorithmic discrimination. To prevent such harm, a large body of literature develops new approaches to quantify fairness. Here, we investigate how one can divert the quantification of fairness by describing a practice we call “fairness hacking” for the purpose of shrouding unfairness in algorithms. This impacts end-users who rely on learning algorithms, as well as the broader community interested in fair AI practices. We introduce two different categories of fairness hacking in reference to the established concept of p-hacking. The first category, intra-metric fairness hacking, describes the misuse of a particular metric by adding or removing sensitive attributes from the analysis. In this context, countermeasures that have been developed to prevent or reduce p-hacking can be applied to similarly prevent or reduce fairness hacking. The second category of fairness hacking is inter-metric fairness hacking. Inter-metric fairness hacking is the search for a specific fair metric with given attributes. We argue that countermeasures to prevent or reduce inter-metric fairness hacking are still in their infancy. Finally, we demonstrate both types of fairness hacking using real datasets. Our paper intends to serve as a guidance for discussions within the fair ML community to prevent or reduce the misuse of fairness metrics, and thus reduce overall harm from ML applications.
ISSN:2210-5433
2210-5441
DOI:10.1007/s13347-023-00679-8