Loading…
SSPool: A Simple Siamese Framework for Graph Infomax Pooling
Graph pooling plays an indispensable role in graph representation learning by aggregating the node representations on the graph into a compact form. However, the existing graph pooling models based on mutual information maximization all need to construct negative samples and usually only consider lo...
Saved in:
Published in: | IEEE transactions on network science and engineering 2024-01, Vol.11 (1), p.1-9 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graph pooling plays an indispensable role in graph representation learning by aggregating the node representations on the graph into a compact form. However, the existing graph pooling models based on mutual information maximization all need to construct negative samples and usually only consider local neighborhood information. In this paper, we propose a novel coarsening graph infomax pooling method called SSPool, which selects the most informative subset of nodes as the pooled graph by neural estimation of the mutual information between the coarsened graph and the augmented coarsening graph. To maximize the neural estimation of mutual information, we propose a self-attention-based top-k method to learn the coarsened graph, while we use edge perturbation to augment the coarsened graph and a simple Siamese network framework to help the coarsened graph to get a better representation. Extensive experimental results show that our method outperforms previous state-of-the-art methods on eight benchmark data sets. |
---|---|
ISSN: | 2327-4697 2334-329X |
DOI: | 10.1109/TNSE.2023.3300878 |