Loading…
Arthropods, nematodes, fungi, and bacteria associated with penguin carrion in Barton Peninsula, King George Island, Antarctica
Carrion decomposition contributes to the soil microbial community structure. This research aimed to identify the soil arthropod, nematode, bacterial, and fungal communities associated with penguin carrion on King George Island, Antarctica. Soil samples were collected around and beneath fresh (freshl...
Saved in:
Published in: | Polar biology 2024, Vol.47 (1), p.41-52 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carrion decomposition contributes to the soil microbial community structure. This research aimed to identify the soil arthropod, nematode, bacterial, and fungal communities associated with penguin carrion on King George Island, Antarctica. Soil samples were collected around and beneath fresh (freshly killed penguins by the predators) and dried (decomposed more than a year) penguin carrion. Soil bacterial and fungal communities associated with the penguin carrion were analyzed using the 16S rRNA and internal transcribed spacer (ITS) gene sequencing, respectively. Arthropod identification was using Sanger sequencing and nematodes were determined using morphological identification. This study demonstrated no significant differences in arthropod and nematode, bacteria, and fungi communities between decomposition stages, soil location, and species of penguin carrion. This is the first study to identify soil arthropods, nematodes, bacterial, and fungal communities associated with penguin carrion, offering important insights into the initial documentation of the necrobiome communities in the polar region. |
---|---|
ISSN: | 0722-4060 1432-2056 |
DOI: | 10.1007/s00300-023-03208-7 |