Loading…

Hydrophilic Surface Modification of Poly(methyl methacrylate)/Poly(methyl methacrylate‐co‐acrylic acid) Composite Film by Surface Activation

Focusing on hydrophilic surface modification of poly(methyl methacrylate)/poly(methyl methacrylate‐co‐acrylic acid) (PMMA/PMMA‐co‐PAA) composite film, a copolymer is synthesized to improve the hydrophilicity and compatibility with PMMA matrix, and the composite film is subjected to surface activatio...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular chemistry and physics 2024-01, Vol.225 (1), p.n/a
Main Authors: Sun, Xin, Hu, Keling, Wang, Kai, Su, Chengkun, Wang, Rui, Ma, Zhengfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4112-fa0efa8bb8121a881d52e0034ee3d0262277f69be5341e8ea20a0426aa468e943
cites cdi_FETCH-LOGICAL-c4112-fa0efa8bb8121a881d52e0034ee3d0262277f69be5341e8ea20a0426aa468e943
container_end_page n/a
container_issue 1
container_start_page
container_title Macromolecular chemistry and physics
container_volume 225
creator Sun, Xin
Hu, Keling
Wang, Kai
Su, Chengkun
Wang, Rui
Ma, Zhengfeng
description Focusing on hydrophilic surface modification of poly(methyl methacrylate)/poly(methyl methacrylate‐co‐acrylic acid) (PMMA/PMMA‐co‐PAA) composite film, a copolymer is synthesized to improve the hydrophilicity and compatibility with PMMA matrix, and the composite film is subjected to surface activation using a sodium hydroxide solution. The infrared absorption peaks corresponding to –OH and –C═O functional groups become progressively weaker with the increase of copolymer content, indicating the formation of intermolecular hydrogen bonds. The hydroxyl absorption peak is significant and two new absorption peaks corresponding to the symmetric contraction and antisymmetric contraction of –COO– appear, indicating that sodium hydroxide solution can disrupt the intermolecular hydrogen bond and react with acrylic acid to form sodium acrylate to make the surface contain sodium elements. The elemental sodium content on the composite film can reach 1.9% and the nanostructures contain 20 times more sodium than the smooth parts, indicating the sodium acrylate can induce surface segregation of PMMA and form nanoparticle‐like structures to improve surface roughness. The hydrophilic component combined with the surface structure makes the contact angle less than 10°. Furthermore, thermostability can be slightly promoted by introducing the copolymer which is closely related to the intermolecular hydrogen bonding formed directly between the copolymer and the PMMA matrix. This project successfully constructs a hydrophilic PMMA/PMMA‐co‐PAA composite film surface by solution blending and surface activation methods. Compared to classical hydrophilic modification approaches such as coatings and plasma treatments, direct mixing of PMMA with hydrophilic copolymer solutions and surface activation with sodium hydroxide solutions is a simpler method and it is a promising method for hydrophilic modification.
doi_str_mv 10.1002/macp.202300312
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911643664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911643664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4112-fa0efa8bb8121a881d52e0034ee3d0262277f69be5341e8ea20a0426aa468e943</originalsourceid><addsrcrecordid>eNqFUM1Kw0AQXkTBWr16XvCih7Szs0maHEuxVmixoJ7DZrNLtyTduEmV3HyEPqNPYtJKPYmX-WG-H-Yj5JrBgAHgsBCyHCAgB-AMT0iPBcg8HvPgtJ0B0WM8wHNyUVVrAIggHvXIbtZkzpYrkxtJn7dOC6nowmZGGylqYzfUarq0eXNbqHrV5LRrQromF7W6G_51-frcSduW_d4qC2myOzqxRWkrUys6NXlB0-boOJa1ed_7XZIzLfJKXf30Pnmd3r9MZt786eFxMp570mcMPS1AaRGlacSQiShiWYCqfdxXimeAIeJopMM4VQH3mYqUQBDgYyiEH0Yq9nmf3Bx0S2fftqqqk7Xduk1rmWDMWOjzMOxQgwNKOltVTumkdKYQrkkYJF3qSZd6cky9JcQHwofJVfMPOlmMJ8tf7jfqaYpy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911643664</pqid></control><display><type>article</type><title>Hydrophilic Surface Modification of Poly(methyl methacrylate)/Poly(methyl methacrylate‐co‐acrylic acid) Composite Film by Surface Activation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sun, Xin ; Hu, Keling ; Wang, Kai ; Su, Chengkun ; Wang, Rui ; Ma, Zhengfeng</creator><creatorcontrib>Sun, Xin ; Hu, Keling ; Wang, Kai ; Su, Chengkun ; Wang, Rui ; Ma, Zhengfeng</creatorcontrib><description>Focusing on hydrophilic surface modification of poly(methyl methacrylate)/poly(methyl methacrylate‐co‐acrylic acid) (PMMA/PMMA‐co‐PAA) composite film, a copolymer is synthesized to improve the hydrophilicity and compatibility with PMMA matrix, and the composite film is subjected to surface activation using a sodium hydroxide solution. The infrared absorption peaks corresponding to –OH and –C═O functional groups become progressively weaker with the increase of copolymer content, indicating the formation of intermolecular hydrogen bonds. The hydroxyl absorption peak is significant and two new absorption peaks corresponding to the symmetric contraction and antisymmetric contraction of –COO– appear, indicating that sodium hydroxide solution can disrupt the intermolecular hydrogen bond and react with acrylic acid to form sodium acrylate to make the surface contain sodium elements. The elemental sodium content on the composite film can reach 1.9% and the nanostructures contain 20 times more sodium than the smooth parts, indicating the sodium acrylate can induce surface segregation of PMMA and form nanoparticle‐like structures to improve surface roughness. The hydrophilic component combined with the surface structure makes the contact angle less than 10°. Furthermore, thermostability can be slightly promoted by introducing the copolymer which is closely related to the intermolecular hydrogen bonding formed directly between the copolymer and the PMMA matrix. This project successfully constructs a hydrophilic PMMA/PMMA‐co‐PAA composite film surface by solution blending and surface activation methods. Compared to classical hydrophilic modification approaches such as coatings and plasma treatments, direct mixing of PMMA with hydrophilic copolymer solutions and surface activation with sodium hydroxide solutions is a simpler method and it is a promising method for hydrophilic modification.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.202300312</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acrylic acid ; Caustic soda ; composite films ; Contact angle ; Copolymers ; Functional groups ; Hydrogen bonding ; Hydrogen bonds ; Hydrophilic surfaces ; Hydrophilicity ; Infrared absorption ; Metal-metal bonding ; poly(methyl methacrylate) ; poly(methyl methacrylate‐co‐acrylic acid) ; Polymethyl methacrylate ; Sodium ; Sodium hydroxide ; Surface activation ; Surface chemistry ; Surface roughness ; Surface structure ; Thermal stability</subject><ispartof>Macromolecular chemistry and physics, 2024-01, Vol.225 (1), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4112-fa0efa8bb8121a881d52e0034ee3d0262277f69be5341e8ea20a0426aa468e943</citedby><cites>FETCH-LOGICAL-c4112-fa0efa8bb8121a881d52e0034ee3d0262277f69be5341e8ea20a0426aa468e943</cites><orcidid>0000-0002-5108-3542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Hu, Keling</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Su, Chengkun</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Ma, Zhengfeng</creatorcontrib><title>Hydrophilic Surface Modification of Poly(methyl methacrylate)/Poly(methyl methacrylate‐co‐acrylic acid) Composite Film by Surface Activation</title><title>Macromolecular chemistry and physics</title><description>Focusing on hydrophilic surface modification of poly(methyl methacrylate)/poly(methyl methacrylate‐co‐acrylic acid) (PMMA/PMMA‐co‐PAA) composite film, a copolymer is synthesized to improve the hydrophilicity and compatibility with PMMA matrix, and the composite film is subjected to surface activation using a sodium hydroxide solution. The infrared absorption peaks corresponding to –OH and –C═O functional groups become progressively weaker with the increase of copolymer content, indicating the formation of intermolecular hydrogen bonds. The hydroxyl absorption peak is significant and two new absorption peaks corresponding to the symmetric contraction and antisymmetric contraction of –COO– appear, indicating that sodium hydroxide solution can disrupt the intermolecular hydrogen bond and react with acrylic acid to form sodium acrylate to make the surface contain sodium elements. The elemental sodium content on the composite film can reach 1.9% and the nanostructures contain 20 times more sodium than the smooth parts, indicating the sodium acrylate can induce surface segregation of PMMA and form nanoparticle‐like structures to improve surface roughness. The hydrophilic component combined with the surface structure makes the contact angle less than 10°. Furthermore, thermostability can be slightly promoted by introducing the copolymer which is closely related to the intermolecular hydrogen bonding formed directly between the copolymer and the PMMA matrix. This project successfully constructs a hydrophilic PMMA/PMMA‐co‐PAA composite film surface by solution blending and surface activation methods. Compared to classical hydrophilic modification approaches such as coatings and plasma treatments, direct mixing of PMMA with hydrophilic copolymer solutions and surface activation with sodium hydroxide solutions is a simpler method and it is a promising method for hydrophilic modification.</description><subject>Acrylic acid</subject><subject>Caustic soda</subject><subject>composite films</subject><subject>Contact angle</subject><subject>Copolymers</subject><subject>Functional groups</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophilic surfaces</subject><subject>Hydrophilicity</subject><subject>Infrared absorption</subject><subject>Metal-metal bonding</subject><subject>poly(methyl methacrylate)</subject><subject>poly(methyl methacrylate‐co‐acrylic acid)</subject><subject>Polymethyl methacrylate</subject><subject>Sodium</subject><subject>Sodium hydroxide</subject><subject>Surface activation</subject><subject>Surface chemistry</subject><subject>Surface roughness</subject><subject>Surface structure</subject><subject>Thermal stability</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUM1Kw0AQXkTBWr16XvCih7Szs0maHEuxVmixoJ7DZrNLtyTduEmV3HyEPqNPYtJKPYmX-WG-H-Yj5JrBgAHgsBCyHCAgB-AMT0iPBcg8HvPgtJ0B0WM8wHNyUVVrAIggHvXIbtZkzpYrkxtJn7dOC6nowmZGGylqYzfUarq0eXNbqHrV5LRrQromF7W6G_51-frcSduW_d4qC2myOzqxRWkrUys6NXlB0-boOJa1ed_7XZIzLfJKXf30Pnmd3r9MZt786eFxMp570mcMPS1AaRGlacSQiShiWYCqfdxXimeAIeJopMM4VQH3mYqUQBDgYyiEH0Yq9nmf3Bx0S2fftqqqk7Xduk1rmWDMWOjzMOxQgwNKOltVTumkdKYQrkkYJF3qSZd6cky9JcQHwofJVfMPOlmMJ8tf7jfqaYpy</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Sun, Xin</creator><creator>Hu, Keling</creator><creator>Wang, Kai</creator><creator>Su, Chengkun</creator><creator>Wang, Rui</creator><creator>Ma, Zhengfeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5108-3542</orcidid></search><sort><creationdate>202401</creationdate><title>Hydrophilic Surface Modification of Poly(methyl methacrylate)/Poly(methyl methacrylate‐co‐acrylic acid) Composite Film by Surface Activation</title><author>Sun, Xin ; Hu, Keling ; Wang, Kai ; Su, Chengkun ; Wang, Rui ; Ma, Zhengfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4112-fa0efa8bb8121a881d52e0034ee3d0262277f69be5341e8ea20a0426aa468e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylic acid</topic><topic>Caustic soda</topic><topic>composite films</topic><topic>Contact angle</topic><topic>Copolymers</topic><topic>Functional groups</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophilic surfaces</topic><topic>Hydrophilicity</topic><topic>Infrared absorption</topic><topic>Metal-metal bonding</topic><topic>poly(methyl methacrylate)</topic><topic>poly(methyl methacrylate‐co‐acrylic acid)</topic><topic>Polymethyl methacrylate</topic><topic>Sodium</topic><topic>Sodium hydroxide</topic><topic>Surface activation</topic><topic>Surface chemistry</topic><topic>Surface roughness</topic><topic>Surface structure</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Hu, Keling</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Su, Chengkun</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Ma, Zhengfeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xin</au><au>Hu, Keling</au><au>Wang, Kai</au><au>Su, Chengkun</au><au>Wang, Rui</au><au>Ma, Zhengfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrophilic Surface Modification of Poly(methyl methacrylate)/Poly(methyl methacrylate‐co‐acrylic acid) Composite Film by Surface Activation</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2024-01</date><risdate>2024</risdate><volume>225</volume><issue>1</issue><epage>n/a</epage><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>Focusing on hydrophilic surface modification of poly(methyl methacrylate)/poly(methyl methacrylate‐co‐acrylic acid) (PMMA/PMMA‐co‐PAA) composite film, a copolymer is synthesized to improve the hydrophilicity and compatibility with PMMA matrix, and the composite film is subjected to surface activation using a sodium hydroxide solution. The infrared absorption peaks corresponding to –OH and –C═O functional groups become progressively weaker with the increase of copolymer content, indicating the formation of intermolecular hydrogen bonds. The hydroxyl absorption peak is significant and two new absorption peaks corresponding to the symmetric contraction and antisymmetric contraction of –COO– appear, indicating that sodium hydroxide solution can disrupt the intermolecular hydrogen bond and react with acrylic acid to form sodium acrylate to make the surface contain sodium elements. The elemental sodium content on the composite film can reach 1.9% and the nanostructures contain 20 times more sodium than the smooth parts, indicating the sodium acrylate can induce surface segregation of PMMA and form nanoparticle‐like structures to improve surface roughness. The hydrophilic component combined with the surface structure makes the contact angle less than 10°. Furthermore, thermostability can be slightly promoted by introducing the copolymer which is closely related to the intermolecular hydrogen bonding formed directly between the copolymer and the PMMA matrix. This project successfully constructs a hydrophilic PMMA/PMMA‐co‐PAA composite film surface by solution blending and surface activation methods. Compared to classical hydrophilic modification approaches such as coatings and plasma treatments, direct mixing of PMMA with hydrophilic copolymer solutions and surface activation with sodium hydroxide solutions is a simpler method and it is a promising method for hydrophilic modification.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.202300312</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5108-3542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-1352
ispartof Macromolecular chemistry and physics, 2024-01, Vol.225 (1), p.n/a
issn 1022-1352
1521-3935
language eng
recordid cdi_proquest_journals_2911643664
source Wiley-Blackwell Read & Publish Collection
subjects Acrylic acid
Caustic soda
composite films
Contact angle
Copolymers
Functional groups
Hydrogen bonding
Hydrogen bonds
Hydrophilic surfaces
Hydrophilicity
Infrared absorption
Metal-metal bonding
poly(methyl methacrylate)
poly(methyl methacrylate‐co‐acrylic acid)
Polymethyl methacrylate
Sodium
Sodium hydroxide
Surface activation
Surface chemistry
Surface roughness
Surface structure
Thermal stability
title Hydrophilic Surface Modification of Poly(methyl methacrylate)/Poly(methyl methacrylate‐co‐acrylic acid) Composite Film by Surface Activation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrophilic%20Surface%20Modification%20of%20Poly(methyl%20methacrylate)/Poly(methyl%20methacrylate%E2%80%90co%E2%80%90acrylic%20acid)%20Composite%20Film%20by%20Surface%20Activation&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Sun,%20Xin&rft.date=2024-01&rft.volume=225&rft.issue=1&rft.epage=n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.202300312&rft_dat=%3Cproquest_cross%3E2911643664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4112-fa0efa8bb8121a881d52e0034ee3d0262277f69be5341e8ea20a0426aa468e943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2911643664&rft_id=info:pmid/&rfr_iscdi=true