Loading…

Numerical study of conforming space‐time methods for Maxwell's equations

Time‐dependent Maxwell's equations govern electromagnetics. Under certain conditions, we can rewrite these equations into a partial differential equation of second order, which in this case is the vectorial wave equation. For the vectorial wave equation, we examine numerical schemes and their c...

Full description

Saved in:
Bibliographic Details
Published in:Numerical methods for partial differential equations 2024-03, Vol.40 (2), p.n/a
Main Authors: Hauser, Julia I. M., Zank, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time‐dependent Maxwell's equations govern electromagnetics. Under certain conditions, we can rewrite these equations into a partial differential equation of second order, which in this case is the vectorial wave equation. For the vectorial wave equation, we examine numerical schemes and their challenges. For this purpose, we consider a space‐time variational setting, that is, time is just another spatial dimension. More specifically, we apply integration by parts in time as well as in space, leading to a space‐time variational formulation with different trial and test spaces. Conforming discretizations of tensor‐product type result in a Galerkin–Petrov finite element method that requires a CFL condition for stability which we study. To overcome the CFL condition, we use a Hilbert‐type transformation that leads to a variational formulation with equal trial and test spaces. Conforming space‐time discretizations result in a new Galerkin–Bubnov finite element method that is unconditionally stable. In numerical examples, we demonstrate the effectiveness of this Galerkin–Bubnov finite element method. Furthermore, we investigate different projections of the right‐hand side and their influence on the convergence rates. This paper is the first step toward a more stable computation and a better understanding of vectorial wave equations in a conforming space‐time approach.
ISSN:0749-159X
1098-2426
DOI:10.1002/num.23070