Loading…

Hierarchical feature fusion network for light field spatial super-resolution

Light field (LF) spatial super-resolution (SR) aims to restore a high-resolution LF image from a degraded low-resolution one. However, due to the complexity of high-dimensional LF images, the existing LF spatial SR methods failed to fully incorporate the correlation between sub-aperture images of th...

Full description

Saved in:
Bibliographic Details
Published in:The Visual computer 2023, Vol.39 (1), p.267-279
Main Authors: Hua, Xiyao, Wang, Minghui, Su, Boni, Liu, Xia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Light field (LF) spatial super-resolution (SR) aims to restore a high-resolution LF image from a degraded low-resolution one. However, due to the complexity of high-dimensional LF images, the existing LF spatial SR methods failed to fully incorporate the correlation between sub-aperture images of the LF. To mitigate this problem, we propose a hierarchical feature fusion network (LF-HFNet) for LF spatial SR with two novel components, namely feature interaction module and residual spatial and channel attention block. By cascading several residual spatial-angular separable convolution blocks with concatenation connections, the former can fully utilize the hierarchical and complementary information between SAIs. And the latter can adaptively rescale the feature responses for emphasizing informative features. Experimental results on both synthetic and real-world LF datasets demonstrate that the proposed method outperforms other state-of-the-art methods with higher PSNR/SSIM.
ISSN:0178-2789
1432-2315
DOI:10.1007/s00371-021-02327-8