Loading…
Object tracking via dense SIFT features and low-rank representation
In this paper, we present a low-rank sparse tracking method which builds upon the particle filtering framework. The proposed method learns the local dense scale-invariant feature transform features corresponding to candidate samples jointly by exploiting the underlying sparse and low-rank constraint...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2019-10, Vol.23 (20), p.10173-10186 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present a low-rank sparse tracking method which builds upon the particle filtering framework. The proposed method learns the local dense scale-invariant feature transform features corresponding to candidate samples jointly by exploiting the underlying sparse and low-rank constraints. Furthermore, the alternating direction method of multipliers method guarantees the optimization equation can be solved accurately and robustly. We evaluate our proposed tracking method against 9 state-of-the-art trackers on a set of 64 challenging sequences. Experimental results show that the proposed method performs favorably against state-of-the-art trackers in terms of accuracy. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-018-3571-5 |