Loading…
Evolutionary optimization of multi-parametric kernel -SVMr for forecasting problems
In this paper, we propose a novel multi-parametric kernel Support Vector Regression algorithm (SVMr) optimized with an evolutionary technique, specially well suited for forecasting problems. The multi-parametric SVMr model and the evolutionary algorithm proposed are both described in detail in the p...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2013-02, Vol.17 (2), p.213-221 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a novel multi-parametric kernel Support Vector Regression algorithm (SVMr) optimized with an evolutionary technique, specially well suited for forecasting problems. The multi-parametric SVMr model and the evolutionary algorithm proposed are both described in detail in the paper. In addition, several new bounds for the multi-parametric kernel considered are obtained, in such a way that the SVMr hyper-parameters’ search space is reduced. We present experimental evidences of the good performance of the evolutionary algorithm for optimizing the multi-parametric kernel, when compared to a standard SVMr with a Grid Search approach. Specifically, results in different real regression problems from public repositories are obtained, and also a real application focused on the short-term temperature prediction at Barcelona’s airport. The results obtained have shown the good performance of the multi-parametric kernel approach both in accuracy and computation time. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-012-0886-5 |