Loading…

Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition

Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major step...

Full description

Saved in:
Bibliographic Details
Published in:Cluster computing 2019-11, Vol.22 (Suppl 6), p.13521-13531
Main Authors: Ravi Kumar, M., Srinivasa Rao, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy.
ISSN:1386-7857
1573-7543
DOI:10.1007/s10586-018-1995-4