Loading…
Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition
Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major step...
Saved in:
Published in: | Cluster computing 2019-11, Vol.22 (Suppl 6), p.13521-13531 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy. |
---|---|
ISSN: | 1386-7857 1573-7543 |
DOI: | 10.1007/s10586-018-1995-4 |