Loading…
Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition
Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major step...
Saved in:
Published in: | Cluster computing 2019-11, Vol.22 (Suppl 6), p.13521-13531 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3 |
container_end_page | 13531 |
container_issue | Suppl 6 |
container_start_page | 13521 |
container_title | Cluster computing |
container_volume | 22 |
creator | Ravi Kumar, M. Srinivasa Rao, Y. |
description | Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy. |
doi_str_mv | 10.1007/s10586-018-1995-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918248685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918248685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYsouK5-AG8Bz9WkSdrkKMu6Cgte9Bym7XTJ0n9muoJ-etNdwZOnGd6832N4SXIr-L3gvHggwbXJUy5MKqzVqTpLFkIXMi20kudxl_FaGF1cJldEe865LTK7SLr16FscJ18xQv99CEisaoHIN76CyQ898z1brzeM_K6HlpVAWLMoE3bQz1yDMB056Gv2CcEfsWjthhpZjdXQjQP5WbxOLhpoCW9-5zJ5f1q_rZ7T7evmZfW4TSsp8iktlYJaSmEMGCzL3JYClW0ybUVRyNJC1GKuqvKGV1ALnslagkaNHBQolMvk7pQ7huHjgDS5_XAI8SdymRUmUyY3OrrEyVWFgShg48bgOwhfTnA3t-pOrbrYqptbdSoy2Ymh6O13GP6S_4d-AA58fMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918248685</pqid></control><display><type>article</type><title>Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition</title><source>Springer Nature</source><creator>Ravi Kumar, M. ; Srinivasa Rao, Y.</creator><creatorcontrib>Ravi Kumar, M. ; Srinivasa Rao, Y.</creatorcontrib><description>Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-018-1995-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Brain research ; Classification ; Computer Communication Networks ; Computer Science ; Convulsions & seizures ; Datasets ; Decomposition ; Electroencephalography ; Entropy ; Epilepsy ; Feature extraction ; Linear programming ; Medical research ; Methods ; Neural networks ; Neurological disorders ; Operating Systems ; Processor Architectures ; Semantics ; Signal classification ; Signal processing ; Support vector machines</subject><ispartof>Cluster computing, 2019-11, Vol.22 (Suppl 6), p.13521-13531</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3</citedby><cites>FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ravi Kumar, M.</creatorcontrib><creatorcontrib>Srinivasa Rao, Y.</creatorcontrib><title>Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy.</description><subject>Accuracy</subject><subject>Brain research</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Convulsions & seizures</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Electroencephalography</subject><subject>Entropy</subject><subject>Epilepsy</subject><subject>Feature extraction</subject><subject>Linear programming</subject><subject>Medical research</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neurological disorders</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Semantics</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Support vector machines</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYsouK5-AG8Bz9WkSdrkKMu6Cgte9Bym7XTJ0n9muoJ-etNdwZOnGd6832N4SXIr-L3gvHggwbXJUy5MKqzVqTpLFkIXMi20kudxl_FaGF1cJldEe865LTK7SLr16FscJ18xQv99CEisaoHIN76CyQ898z1brzeM_K6HlpVAWLMoE3bQz1yDMB056Gv2CcEfsWjthhpZjdXQjQP5WbxOLhpoCW9-5zJ5f1q_rZ7T7evmZfW4TSsp8iktlYJaSmEMGCzL3JYClW0ybUVRyNJC1GKuqvKGV1ALnslagkaNHBQolMvk7pQ7huHjgDS5_XAI8SdymRUmUyY3OrrEyVWFgShg48bgOwhfTnA3t-pOrbrYqptbdSoy2Ymh6O13GP6S_4d-AA58fMQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Ravi Kumar, M.</creator><creator>Srinivasa Rao, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191101</creationdate><title>Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition</title><author>Ravi Kumar, M. ; Srinivasa Rao, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Brain research</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Convulsions & seizures</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Electroencephalography</topic><topic>Entropy</topic><topic>Epilepsy</topic><topic>Feature extraction</topic><topic>Linear programming</topic><topic>Medical research</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neurological disorders</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Semantics</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi Kumar, M.</creatorcontrib><creatorcontrib>Srinivasa Rao, Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravi Kumar, M.</au><au>Srinivasa Rao, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 6</issue><spage>13521</spage><epage>13531</epage><pages>13521-13531</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-018-1995-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2019-11, Vol.22 (Suppl 6), p.13521-13531 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_2918248685 |
source | Springer Nature |
subjects | Accuracy Brain research Classification Computer Communication Networks Computer Science Convulsions & seizures Datasets Decomposition Electroencephalography Entropy Epilepsy Feature extraction Linear programming Medical research Methods Neural networks Neurological disorders Operating Systems Processor Architectures Semantics Signal classification Signal processing Support vector machines |
title | Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epileptic%20seizures%20classification%20in%20EEG%20signal%20based%20on%20semantic%20features%20and%20variational%20mode%20decomposition&rft.jtitle=Cluster%20computing&rft.au=Ravi%20Kumar,%20M.&rft.date=2019-11-01&rft.volume=22&rft.issue=Suppl%206&rft.spage=13521&rft.epage=13531&rft.pages=13521-13531&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-018-1995-4&rft_dat=%3Cproquest_cross%3E2918248685%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918248685&rft_id=info:pmid/&rfr_iscdi=true |