Loading…

Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition

Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major step...

Full description

Saved in:
Bibliographic Details
Published in:Cluster computing 2019-11, Vol.22 (Suppl 6), p.13521-13531
Main Authors: Ravi Kumar, M., Srinivasa Rao, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3
cites cdi_FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3
container_end_page 13531
container_issue Suppl 6
container_start_page 13521
container_title Cluster computing
container_volume 22
creator Ravi Kumar, M.
Srinivasa Rao, Y.
description Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy.
doi_str_mv 10.1007/s10586-018-1995-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918248685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918248685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYsouK5-AG8Bz9WkSdrkKMu6Cgte9Bym7XTJ0n9muoJ-etNdwZOnGd6832N4SXIr-L3gvHggwbXJUy5MKqzVqTpLFkIXMi20kudxl_FaGF1cJldEe865LTK7SLr16FscJ18xQv99CEisaoHIN76CyQ898z1brzeM_K6HlpVAWLMoE3bQz1yDMB056Gv2CcEfsWjthhpZjdXQjQP5WbxOLhpoCW9-5zJ5f1q_rZ7T7evmZfW4TSsp8iktlYJaSmEMGCzL3JYClW0ybUVRyNJC1GKuqvKGV1ALnslagkaNHBQolMvk7pQ7huHjgDS5_XAI8SdymRUmUyY3OrrEyVWFgShg48bgOwhfTnA3t-pOrbrYqptbdSoy2Ymh6O13GP6S_4d-AA58fMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918248685</pqid></control><display><type>article</type><title>Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition</title><source>Springer Nature</source><creator>Ravi Kumar, M. ; Srinivasa Rao, Y.</creator><creatorcontrib>Ravi Kumar, M. ; Srinivasa Rao, Y.</creatorcontrib><description>Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-018-1995-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Brain research ; Classification ; Computer Communication Networks ; Computer Science ; Convulsions &amp; seizures ; Datasets ; Decomposition ; Electroencephalography ; Entropy ; Epilepsy ; Feature extraction ; Linear programming ; Medical research ; Methods ; Neural networks ; Neurological disorders ; Operating Systems ; Processor Architectures ; Semantics ; Signal classification ; Signal processing ; Support vector machines</subject><ispartof>Cluster computing, 2019-11, Vol.22 (Suppl 6), p.13521-13531</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3</citedby><cites>FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ravi Kumar, M.</creatorcontrib><creatorcontrib>Srinivasa Rao, Y.</creatorcontrib><title>Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy.</description><subject>Accuracy</subject><subject>Brain research</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Convulsions &amp; seizures</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Electroencephalography</subject><subject>Entropy</subject><subject>Epilepsy</subject><subject>Feature extraction</subject><subject>Linear programming</subject><subject>Medical research</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neurological disorders</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Semantics</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Support vector machines</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYsouK5-AG8Bz9WkSdrkKMu6Cgte9Bym7XTJ0n9muoJ-etNdwZOnGd6832N4SXIr-L3gvHggwbXJUy5MKqzVqTpLFkIXMi20kudxl_FaGF1cJldEe865LTK7SLr16FscJ18xQv99CEisaoHIN76CyQ898z1brzeM_K6HlpVAWLMoE3bQz1yDMB056Gv2CcEfsWjthhpZjdXQjQP5WbxOLhpoCW9-5zJ5f1q_rZ7T7evmZfW4TSsp8iktlYJaSmEMGCzL3JYClW0ybUVRyNJC1GKuqvKGV1ALnslagkaNHBQolMvk7pQ7huHjgDS5_XAI8SdymRUmUyY3OrrEyVWFgShg48bgOwhfTnA3t-pOrbrYqptbdSoy2Ymh6O13GP6S_4d-AA58fMQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Ravi Kumar, M.</creator><creator>Srinivasa Rao, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191101</creationdate><title>Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition</title><author>Ravi Kumar, M. ; Srinivasa Rao, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Brain research</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Convulsions &amp; seizures</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Electroencephalography</topic><topic>Entropy</topic><topic>Epilepsy</topic><topic>Feature extraction</topic><topic>Linear programming</topic><topic>Medical research</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neurological disorders</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Semantics</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi Kumar, M.</creatorcontrib><creatorcontrib>Srinivasa Rao, Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravi Kumar, M.</au><au>Srinivasa Rao, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>22</volume><issue>Suppl 6</issue><spage>13521</spage><epage>13531</epage><pages>13521-13531</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Electroencephalogram (EEG) is the most important monitoring methodology for the detection of epileptic seizure diseases. In this paper, EEG based epileptic seizure detection is assessed by employing Bern-Barcelona EEG and Bonn University EEG database. The proposed technique contains three major steps: decomposition, feature extraction and classification. Initially, decomposition using variational mode decomposition delivers an effective frequency localization. After decomposition, semantic feature extraction is carried-out by employing differential entropy and peak-magnitude of root mean square ratio for achieving optimal feature subsets and also for the rejection of irrelevant and redundant features. After finding the feature information, a superior classifier named as random forest is employed for classifying the normality and abnormality of seizure. The experimental result shows that the proposed approach distinguishes the normality and abnormality of seizure EEG signals in terms of sensitivity, specificity, accuracy, positive predictive value and negative predictive value with a superior recognition accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-018-1995-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2019-11, Vol.22 (Suppl 6), p.13521-13531
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_2918248685
source Springer Nature
subjects Accuracy
Brain research
Classification
Computer Communication Networks
Computer Science
Convulsions & seizures
Datasets
Decomposition
Electroencephalography
Entropy
Epilepsy
Feature extraction
Linear programming
Medical research
Methods
Neural networks
Neurological disorders
Operating Systems
Processor Architectures
Semantics
Signal classification
Signal processing
Support vector machines
title Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epileptic%20seizures%20classification%20in%20EEG%20signal%20based%20on%20semantic%20features%20and%20variational%20mode%20decomposition&rft.jtitle=Cluster%20computing&rft.au=Ravi%20Kumar,%20M.&rft.date=2019-11-01&rft.volume=22&rft.issue=Suppl%206&rft.spage=13521&rft.epage=13531&rft.pages=13521-13531&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-018-1995-4&rft_dat=%3Cproquest_cross%3E2918248685%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-b44ad33188a8ebb69b1e49f2591773b9abb6dec4c6f0cad1023d3a5e5e0a4a4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918248685&rft_id=info:pmid/&rfr_iscdi=true