Loading…
Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method
In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zeta...
Saved in:
Published in: | Journal of cluster science 2022-09, Vol.33 (5), p.2069-2075 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23 |
container_end_page | 2075 |
container_issue | 5 |
container_start_page | 2069 |
container_title | Journal of cluster science |
container_volume | 33 |
creator | Tseng, Kuo-Hsiung Lin, Wei-Jhih Chung, Meng-Yun Tien, Der-Chi Stobinski, Leszek |
description | In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs. |
doi_str_mv | 10.1007/s10876-021-02127-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918302920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918302920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwicS44ydokRzQGTNoACThHaeJtHWUZSXvYnp6OInHjYNmH_7Otj5BLBtcMQN4kBkoWGXB2KC6z_REZsFzyTKmCH3czjCCTXKpTcpbSGgC0EmJA5i8RtzZWmyUdt9sY2kSnwVce6ZPdBBfqOlSeljvarJBOanRNrJyt6WsHfdC7KrmVjUukc2xWwZ-Tk4WtE1789iF5v5-8jR-z2fPDdHw7y5xgusmY496JkqO3pUdeFkyPcll4Vyq0CFp66xnkOWPcalYI7f0CC8mVLC1oz8WQXPV7u4-_WkyNWYc2brqThmumBHDNoUvxPuViSCniwmxj9WnjzjAwB22m12Y6ZeZHm9l3kOihtD1Ywfi3-h_qGxQBcOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918302920</pqid></control><display><type>article</type><title>Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method</title><source>Springer Nature</source><creator>Tseng, Kuo-Hsiung ; Lin, Wei-Jhih ; Chung, Meng-Yun ; Tien, Der-Chi ; Stobinski, Leszek</creator><creatorcontrib>Tseng, Kuo-Hsiung ; Lin, Wei-Jhih ; Chung, Meng-Yun ; Tien, Der-Chi ; Stobinski, Leszek</creatorcontrib><description>In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs.</description><identifier>ISSN: 1040-7278</identifier><identifier>EISSN: 1572-8862</identifier><identifier>DOI: 10.1007/s10876-021-02127-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalysis ; Chemistry ; Chemistry and Materials Science ; Copper ; Copper wire ; Crystal structure ; Cuprous iodide ; Deionization ; Electric discharges ; Electric fields ; Electric sparks ; Electrodes ; Energy ; Heat ; High temperature ; Inorganic Chemistry ; Iodine ; Methods ; Molecular structure ; Nanochemistry ; Nanoparticles ; Nanotechnology ; Original Paper ; Parameters ; Physical Chemistry ; Pulse duration modulation ; Spectrophotometry ; Trace elements ; Zeta potential</subject><ispartof>Journal of cluster science, 2022-09, Vol.33 (5), p.2069-2075</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23</citedby><cites>FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tseng, Kuo-Hsiung</creatorcontrib><creatorcontrib>Lin, Wei-Jhih</creatorcontrib><creatorcontrib>Chung, Meng-Yun</creatorcontrib><creatorcontrib>Tien, Der-Chi</creatorcontrib><creatorcontrib>Stobinski, Leszek</creatorcontrib><title>Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method</title><title>Journal of cluster science</title><addtitle>J Clust Sci</addtitle><description>In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Copper wire</subject><subject>Crystal structure</subject><subject>Cuprous iodide</subject><subject>Deionization</subject><subject>Electric discharges</subject><subject>Electric fields</subject><subject>Electric sparks</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Heat</subject><subject>High temperature</subject><subject>Inorganic Chemistry</subject><subject>Iodine</subject><subject>Methods</subject><subject>Molecular structure</subject><subject>Nanochemistry</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Pulse duration modulation</subject><subject>Spectrophotometry</subject><subject>Trace elements</subject><subject>Zeta potential</subject><issn>1040-7278</issn><issn>1572-8862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApwicS44ydokRzQGTNoACThHaeJtHWUZSXvYnp6OInHjYNmH_7Otj5BLBtcMQN4kBkoWGXB2KC6z_REZsFzyTKmCH3czjCCTXKpTcpbSGgC0EmJA5i8RtzZWmyUdt9sY2kSnwVce6ZPdBBfqOlSeljvarJBOanRNrJyt6WsHfdC7KrmVjUukc2xWwZ-Tk4WtE1789iF5v5-8jR-z2fPDdHw7y5xgusmY496JkqO3pUdeFkyPcll4Vyq0CFp66xnkOWPcalYI7f0CC8mVLC1oz8WQXPV7u4-_WkyNWYc2brqThmumBHDNoUvxPuViSCniwmxj9WnjzjAwB22m12Y6ZeZHm9l3kOihtD1Ywfi3-h_qGxQBcOA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Tseng, Kuo-Hsiung</creator><creator>Lin, Wei-Jhih</creator><creator>Chung, Meng-Yun</creator><creator>Tien, Der-Chi</creator><creator>Stobinski, Leszek</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20220901</creationdate><title>Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method</title><author>Tseng, Kuo-Hsiung ; Lin, Wei-Jhih ; Chung, Meng-Yun ; Tien, Der-Chi ; Stobinski, Leszek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Copper wire</topic><topic>Crystal structure</topic><topic>Cuprous iodide</topic><topic>Deionization</topic><topic>Electric discharges</topic><topic>Electric fields</topic><topic>Electric sparks</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Heat</topic><topic>High temperature</topic><topic>Inorganic Chemistry</topic><topic>Iodine</topic><topic>Methods</topic><topic>Molecular structure</topic><topic>Nanochemistry</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Pulse duration modulation</topic><topic>Spectrophotometry</topic><topic>Trace elements</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tseng, Kuo-Hsiung</creatorcontrib><creatorcontrib>Lin, Wei-Jhih</creatorcontrib><creatorcontrib>Chung, Meng-Yun</creatorcontrib><creatorcontrib>Tien, Der-Chi</creatorcontrib><creatorcontrib>Stobinski, Leszek</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of cluster science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tseng, Kuo-Hsiung</au><au>Lin, Wei-Jhih</au><au>Chung, Meng-Yun</au><au>Tien, Der-Chi</au><au>Stobinski, Leszek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method</atitle><jtitle>Journal of cluster science</jtitle><stitle>J Clust Sci</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>33</volume><issue>5</issue><spage>2069</spage><epage>2075</epage><pages>2069-2075</pages><issn>1040-7278</issn><eissn>1572-8862</eissn><abstract>In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10876-021-02127-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7278 |
ispartof | Journal of cluster science, 2022-09, Vol.33 (5), p.2069-2075 |
issn | 1040-7278 1572-8862 |
language | eng |
recordid | cdi_proquest_journals_2918302920 |
source | Springer Nature |
subjects | Catalysis Chemistry Chemistry and Materials Science Copper Copper wire Crystal structure Cuprous iodide Deionization Electric discharges Electric fields Electric sparks Electrodes Energy Heat High temperature Inorganic Chemistry Iodine Methods Molecular structure Nanochemistry Nanoparticles Nanotechnology Original Paper Parameters Physical Chemistry Pulse duration modulation Spectrophotometry Trace elements Zeta potential |
title | Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparing%20Cuprous%20Iodide%20Nanocolloid%20by%20the%20Electrical%20Spark%20Discharge%20Method&rft.jtitle=Journal%20of%20cluster%20science&rft.au=Tseng,%20Kuo-Hsiung&rft.date=2022-09-01&rft.volume=33&rft.issue=5&rft.spage=2069&rft.epage=2075&rft.pages=2069-2075&rft.issn=1040-7278&rft.eissn=1572-8862&rft_id=info:doi/10.1007/s10876-021-02127-z&rft_dat=%3Cproquest_cross%3E2918302920%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918302920&rft_id=info:pmid/&rfr_iscdi=true |