Loading…

Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method

In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zeta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cluster science 2022-09, Vol.33 (5), p.2069-2075
Main Authors: Tseng, Kuo-Hsiung, Lin, Wei-Jhih, Chung, Meng-Yun, Tien, Der-Chi, Stobinski, Leszek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23
cites cdi_FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23
container_end_page 2075
container_issue 5
container_start_page 2069
container_title Journal of cluster science
container_volume 33
creator Tseng, Kuo-Hsiung
Lin, Wei-Jhih
Chung, Meng-Yun
Tien, Der-Chi
Stobinski, Leszek
description In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs.
doi_str_mv 10.1007/s10876-021-02127-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918302920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918302920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwicS44ydokRzQGTNoACThHaeJtHWUZSXvYnp6OInHjYNmH_7Otj5BLBtcMQN4kBkoWGXB2KC6z_REZsFzyTKmCH3czjCCTXKpTcpbSGgC0EmJA5i8RtzZWmyUdt9sY2kSnwVce6ZPdBBfqOlSeljvarJBOanRNrJyt6WsHfdC7KrmVjUukc2xWwZ-Tk4WtE1789iF5v5-8jR-z2fPDdHw7y5xgusmY496JkqO3pUdeFkyPcll4Vyq0CFp66xnkOWPcalYI7f0CC8mVLC1oz8WQXPV7u4-_WkyNWYc2brqThmumBHDNoUvxPuViSCniwmxj9WnjzjAwB22m12Y6ZeZHm9l3kOihtD1Ywfi3-h_qGxQBcOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918302920</pqid></control><display><type>article</type><title>Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method</title><source>Springer Nature</source><creator>Tseng, Kuo-Hsiung ; Lin, Wei-Jhih ; Chung, Meng-Yun ; Tien, Der-Chi ; Stobinski, Leszek</creator><creatorcontrib>Tseng, Kuo-Hsiung ; Lin, Wei-Jhih ; Chung, Meng-Yun ; Tien, Der-Chi ; Stobinski, Leszek</creatorcontrib><description>In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs.</description><identifier>ISSN: 1040-7278</identifier><identifier>EISSN: 1572-8862</identifier><identifier>DOI: 10.1007/s10876-021-02127-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalysis ; Chemistry ; Chemistry and Materials Science ; Copper ; Copper wire ; Crystal structure ; Cuprous iodide ; Deionization ; Electric discharges ; Electric fields ; Electric sparks ; Electrodes ; Energy ; Heat ; High temperature ; Inorganic Chemistry ; Iodine ; Methods ; Molecular structure ; Nanochemistry ; Nanoparticles ; Nanotechnology ; Original Paper ; Parameters ; Physical Chemistry ; Pulse duration modulation ; Spectrophotometry ; Trace elements ; Zeta potential</subject><ispartof>Journal of cluster science, 2022-09, Vol.33 (5), p.2069-2075</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23</citedby><cites>FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tseng, Kuo-Hsiung</creatorcontrib><creatorcontrib>Lin, Wei-Jhih</creatorcontrib><creatorcontrib>Chung, Meng-Yun</creatorcontrib><creatorcontrib>Tien, Der-Chi</creatorcontrib><creatorcontrib>Stobinski, Leszek</creatorcontrib><title>Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method</title><title>Journal of cluster science</title><addtitle>J Clust Sci</addtitle><description>In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Copper wire</subject><subject>Crystal structure</subject><subject>Cuprous iodide</subject><subject>Deionization</subject><subject>Electric discharges</subject><subject>Electric fields</subject><subject>Electric sparks</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Heat</subject><subject>High temperature</subject><subject>Inorganic Chemistry</subject><subject>Iodine</subject><subject>Methods</subject><subject>Molecular structure</subject><subject>Nanochemistry</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Pulse duration modulation</subject><subject>Spectrophotometry</subject><subject>Trace elements</subject><subject>Zeta potential</subject><issn>1040-7278</issn><issn>1572-8862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApwicS44ydokRzQGTNoACThHaeJtHWUZSXvYnp6OInHjYNmH_7Otj5BLBtcMQN4kBkoWGXB2KC6z_REZsFzyTKmCH3czjCCTXKpTcpbSGgC0EmJA5i8RtzZWmyUdt9sY2kSnwVce6ZPdBBfqOlSeljvarJBOanRNrJyt6WsHfdC7KrmVjUukc2xWwZ-Tk4WtE1789iF5v5-8jR-z2fPDdHw7y5xgusmY496JkqO3pUdeFkyPcll4Vyq0CFp66xnkOWPcalYI7f0CC8mVLC1oz8WQXPV7u4-_WkyNWYc2brqThmumBHDNoUvxPuViSCniwmxj9WnjzjAwB22m12Y6ZeZHm9l3kOihtD1Ywfi3-h_qGxQBcOA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Tseng, Kuo-Hsiung</creator><creator>Lin, Wei-Jhih</creator><creator>Chung, Meng-Yun</creator><creator>Tien, Der-Chi</creator><creator>Stobinski, Leszek</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20220901</creationdate><title>Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method</title><author>Tseng, Kuo-Hsiung ; Lin, Wei-Jhih ; Chung, Meng-Yun ; Tien, Der-Chi ; Stobinski, Leszek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Copper wire</topic><topic>Crystal structure</topic><topic>Cuprous iodide</topic><topic>Deionization</topic><topic>Electric discharges</topic><topic>Electric fields</topic><topic>Electric sparks</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Heat</topic><topic>High temperature</topic><topic>Inorganic Chemistry</topic><topic>Iodine</topic><topic>Methods</topic><topic>Molecular structure</topic><topic>Nanochemistry</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Pulse duration modulation</topic><topic>Spectrophotometry</topic><topic>Trace elements</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tseng, Kuo-Hsiung</creatorcontrib><creatorcontrib>Lin, Wei-Jhih</creatorcontrib><creatorcontrib>Chung, Meng-Yun</creatorcontrib><creatorcontrib>Tien, Der-Chi</creatorcontrib><creatorcontrib>Stobinski, Leszek</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of cluster science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tseng, Kuo-Hsiung</au><au>Lin, Wei-Jhih</au><au>Chung, Meng-Yun</au><au>Tien, Der-Chi</au><au>Stobinski, Leszek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method</atitle><jtitle>Journal of cluster science</jtitle><stitle>J Clust Sci</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>33</volume><issue>5</issue><spage>2069</spage><epage>2075</epage><pages>2069-2075</pages><issn>1040-7278</issn><eissn>1572-8862</eissn><abstract>In this study, the electric spark discharge method was used to prepare a cuprous iodide nanocolloid (CuINC); specifically, an electrical discharge machine was used to prepare a CuINC under five sets of pulse width modulation (Ton–Toff) parameters, and ultraviolet–visible spectrophotometry and a zetasizer were used to evaluate the most suitable parameter set. Copper wires were used as electrodes (copper content = 99.7%, diameter = 1 mm), and deionized water mixed with iodine was used as the dielectric fluid. The analysis results indicated that the CuINC prepared under Ton–Toff = 10–10 µs had absorbance of 1.8 and a zeta potential of − 31.9 mV. The resultant CuINC had the highest concentration and suspension stability; this indicated that Ton–Toff = 10–10 µs is the most suitable parameter combination for preparing a CuINC. X-ray diffraction revealed a complete CuI crystal structure. Transmission electron microscopy images showed that most of the CuI nanoparticles were smaller than 5 nm and that the nanoparticles were evenly dispersed. The electric-discharge-based production process employed in this study is rapid and simple, and the end products have favorable suspension power. The method is a safe, environmentally friendly, and rapid method of preparing CuINCs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10876-021-02127-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7278
ispartof Journal of cluster science, 2022-09, Vol.33 (5), p.2069-2075
issn 1040-7278
1572-8862
language eng
recordid cdi_proquest_journals_2918302920
source Springer Nature
subjects Catalysis
Chemistry
Chemistry and Materials Science
Copper
Copper wire
Crystal structure
Cuprous iodide
Deionization
Electric discharges
Electric fields
Electric sparks
Electrodes
Energy
Heat
High temperature
Inorganic Chemistry
Iodine
Methods
Molecular structure
Nanochemistry
Nanoparticles
Nanotechnology
Original Paper
Parameters
Physical Chemistry
Pulse duration modulation
Spectrophotometry
Trace elements
Zeta potential
title Preparing Cuprous Iodide Nanocolloid by the Electrical Spark Discharge Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparing%20Cuprous%20Iodide%20Nanocolloid%20by%20the%20Electrical%20Spark%20Discharge%20Method&rft.jtitle=Journal%20of%20cluster%20science&rft.au=Tseng,%20Kuo-Hsiung&rft.date=2022-09-01&rft.volume=33&rft.issue=5&rft.spage=2069&rft.epage=2075&rft.pages=2069-2075&rft.issn=1040-7278&rft.eissn=1572-8862&rft_id=info:doi/10.1007/s10876-021-02127-z&rft_dat=%3Cproquest_cross%3E2918302920%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1c2dc3b2edabde2b6194576dcb8eae097dad1055112a91639ddfe67287ba09d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918302920&rft_id=info:pmid/&rfr_iscdi=true