Loading…
Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems
We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a functio...
Saved in:
Published in: | Journal of scientific computing 2019-12, Vol.81 (3), p.1509-1526 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-019-01070-6 |