Loading…
Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems
We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a functio...
Saved in:
Published in: | Journal of scientific computing 2019-12, Vol.81 (3), p.1509-1526 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3 |
container_end_page | 1526 |
container_issue | 3 |
container_start_page | 1509 |
container_title | Journal of scientific computing |
container_volume | 81 |
creator | Hagstrom, T. Banks, J. W. Buckner, B. B. Juhnke, K. |
description | We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions. |
doi_str_mv | 10.1007/s10915-019-01070-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMQfOdvw1ohZaUBFDYbbc5AwpbVzsZMi_JxAkNobT3fC870kPIZcUrimAukkUDBU5UDMMKMjlEZlQoXiupKHHZAJai1wVqjglZyltAcBowybkcV6nMjRt3XShS9nC7TB-1E02r73HiE2J2RO276FKmQ8xW_f7PbaxLrNlf8C4CbvhXPepxX06Jyfe7RJe_O4peb2_e5kt89Xz4mF2u8pLTk2beyGp8FIKpXyFKMF4YZQExSttnNgw8NrREjR3BbLCqIor5kCzopIVVo5PydXYe4jhs8PU2m3oYjO8tMxQzakAyQaKjVQZQ0oRvT3Eeu9ibynYb2d2dGYHZ_bHmZVDiI-hNMDNG8a_6n9SX2Wdbvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315062</pqid></control><display><type>article</type><title>Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems</title><source>Springer Link</source><creator>Hagstrom, T. ; Banks, J. W. ; Buckner, B. B. ; Juhnke, K.</creator><creatorcontrib>Hagstrom, T. ; Banks, J. W. ; Buckner, B. B. ; Juhnke, K.</creatorcontrib><description>We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-019-01070-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Galerkin method ; Hyperbolic systems ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Operators (mathematics) ; Polynomials ; Theoretical</subject><ispartof>Journal of scientific computing, 2019-12, Vol.81 (3), p.1509-1526</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3</citedby><cites>FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hagstrom, T.</creatorcontrib><creatorcontrib>Banks, J. W.</creatorcontrib><creatorcontrib>Buckner, B. B.</creatorcontrib><creatorcontrib>Juhnke, K.</creatorcontrib><title>Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Galerkin method</subject><subject>Hyperbolic systems</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMQfOdvw1ohZaUBFDYbbc5AwpbVzsZMi_JxAkNobT3fC870kPIZcUrimAukkUDBU5UDMMKMjlEZlQoXiupKHHZAJai1wVqjglZyltAcBowybkcV6nMjRt3XShS9nC7TB-1E02r73HiE2J2RO276FKmQ8xW_f7PbaxLrNlf8C4CbvhXPepxX06Jyfe7RJe_O4peb2_e5kt89Xz4mF2u8pLTk2beyGp8FIKpXyFKMF4YZQExSttnNgw8NrREjR3BbLCqIor5kCzopIVVo5PydXYe4jhs8PU2m3oYjO8tMxQzakAyQaKjVQZQ0oRvT3Eeu9ibynYb2d2dGYHZ_bHmZVDiI-hNMDNG8a_6n9SX2Wdbvo</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hagstrom, T.</creator><creator>Banks, J. W.</creator><creator>Buckner, B. B.</creator><creator>Juhnke, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191201</creationdate><title>Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems</title><author>Hagstrom, T. ; Banks, J. W. ; Buckner, B. B. ; Juhnke, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Galerkin method</topic><topic>Hyperbolic systems</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagstrom, T.</creatorcontrib><creatorcontrib>Banks, J. W.</creatorcontrib><creatorcontrib>Buckner, B. B.</creatorcontrib><creatorcontrib>Juhnke, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagstrom, T.</au><au>Banks, J. W.</au><au>Buckner, B. B.</au><au>Juhnke, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>81</volume><issue>3</issue><spage>1509</spage><epage>1526</epage><pages>1509-1526</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-019-01070-6</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2019-12, Vol.81 (3), p.1509-1526 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_2918315062 |
source | Springer Link |
subjects | Algorithms Approximation Boundary conditions Computational Mathematics and Numerical Analysis Galerkin method Hyperbolic systems Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Operators (mathematics) Polynomials Theoretical |
title | Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20Galerkin%20Difference%20Methods%20for%20Symmetric%20Hyperbolic%20Systems&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Hagstrom,%20T.&rft.date=2019-12-01&rft.volume=81&rft.issue=3&rft.spage=1509&rft.epage=1526&rft.pages=1509-1526&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-019-01070-6&rft_dat=%3Cproquest_cross%3E2918315062%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918315062&rft_id=info:pmid/&rfr_iscdi=true |