Loading…

Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems

We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a functio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2019-12, Vol.81 (3), p.1509-1526
Main Authors: Hagstrom, T., Banks, J. W., Buckner, B. B., Juhnke, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3
cites cdi_FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3
container_end_page 1526
container_issue 3
container_start_page 1509
container_title Journal of scientific computing
container_volume 81
creator Hagstrom, T.
Banks, J. W.
Buckner, B. B.
Juhnke, K.
description We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.
doi_str_mv 10.1007/s10915-019-01070-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMQfOdvw1ohZaUBFDYbbc5AwpbVzsZMi_JxAkNobT3fC870kPIZcUrimAukkUDBU5UDMMKMjlEZlQoXiupKHHZAJai1wVqjglZyltAcBowybkcV6nMjRt3XShS9nC7TB-1E02r73HiE2J2RO276FKmQ8xW_f7PbaxLrNlf8C4CbvhXPepxX06Jyfe7RJe_O4peb2_e5kt89Xz4mF2u8pLTk2beyGp8FIKpXyFKMF4YZQExSttnNgw8NrREjR3BbLCqIor5kCzopIVVo5PydXYe4jhs8PU2m3oYjO8tMxQzakAyQaKjVQZQ0oRvT3Eeu9ibynYb2d2dGYHZ_bHmZVDiI-hNMDNG8a_6n9SX2Wdbvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315062</pqid></control><display><type>article</type><title>Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems</title><source>Springer Link</source><creator>Hagstrom, T. ; Banks, J. W. ; Buckner, B. B. ; Juhnke, K.</creator><creatorcontrib>Hagstrom, T. ; Banks, J. W. ; Buckner, B. B. ; Juhnke, K.</creatorcontrib><description>We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-019-01070-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Galerkin method ; Hyperbolic systems ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Operators (mathematics) ; Polynomials ; Theoretical</subject><ispartof>Journal of scientific computing, 2019-12, Vol.81 (3), p.1509-1526</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3</citedby><cites>FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hagstrom, T.</creatorcontrib><creatorcontrib>Banks, J. W.</creatorcontrib><creatorcontrib>Buckner, B. B.</creatorcontrib><creatorcontrib>Juhnke, K.</creatorcontrib><title>Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Galerkin method</subject><subject>Hyperbolic systems</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMQfOdvw1ohZaUBFDYbbc5AwpbVzsZMi_JxAkNobT3fC870kPIZcUrimAukkUDBU5UDMMKMjlEZlQoXiupKHHZAJai1wVqjglZyltAcBowybkcV6nMjRt3XShS9nC7TB-1E02r73HiE2J2RO276FKmQ8xW_f7PbaxLrNlf8C4CbvhXPepxX06Jyfe7RJe_O4peb2_e5kt89Xz4mF2u8pLTk2beyGp8FIKpXyFKMF4YZQExSttnNgw8NrREjR3BbLCqIor5kCzopIVVo5PydXYe4jhs8PU2m3oYjO8tMxQzakAyQaKjVQZQ0oRvT3Eeu9ibynYb2d2dGYHZ_bHmZVDiI-hNMDNG8a_6n9SX2Wdbvo</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hagstrom, T.</creator><creator>Banks, J. W.</creator><creator>Buckner, B. B.</creator><creator>Juhnke, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191201</creationdate><title>Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems</title><author>Hagstrom, T. ; Banks, J. W. ; Buckner, B. B. ; Juhnke, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Galerkin method</topic><topic>Hyperbolic systems</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagstrom, T.</creatorcontrib><creatorcontrib>Banks, J. W.</creatorcontrib><creatorcontrib>Buckner, B. B.</creatorcontrib><creatorcontrib>Juhnke, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagstrom, T.</au><au>Banks, J. W.</au><au>Buckner, B. B.</au><au>Juhnke, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>81</volume><issue>3</issue><spage>1509</spage><epage>1526</epage><pages>1509-1526</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-019-01070-6</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2019-12, Vol.81 (3), p.1509-1526
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918315062
source Springer Link
subjects Algorithms
Approximation
Boundary conditions
Computational Mathematics and Numerical Analysis
Galerkin method
Hyperbolic systems
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Operators (mathematics)
Polynomials
Theoretical
title Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20Galerkin%20Difference%20Methods%20for%20Symmetric%20Hyperbolic%20Systems&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Hagstrom,%20T.&rft.date=2019-12-01&rft.volume=81&rft.issue=3&rft.spage=1509&rft.epage=1526&rft.pages=1509-1526&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-019-01070-6&rft_dat=%3Cproquest_cross%3E2918315062%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f5615f66577fdee609f5976073d89a5b20f8a1c083a4e2497d372a0824d6deda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918315062&rft_id=info:pmid/&rfr_iscdi=true