Loading…

Long Short Term Memory Based Self Tuning Regulator Design for Nonlinear Systems

In this paper, a Long Short Term Memory (LSTM) based Self Tuning Regulator (STR) for trajectory tracking problem of nonlinear systems is proposed. In the STR, a Proportional Integral Derivative (PID) controller is used as an adaptive parametric controller. The system model is estimated at every time...

Full description

Saved in:
Bibliographic Details
Published in:Neural processing letters 2023-06, Vol.55 (3), p.3045-3079
Main Authors: Sanatel, Çağatay, Günel, Gülay Öke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a Long Short Term Memory (LSTM) based Self Tuning Regulator (STR) for trajectory tracking problem of nonlinear systems is proposed. In the STR, a Proportional Integral Derivative (PID) controller is used as an adaptive parametric controller. The system model is estimated at every time step since it is utilized in computing the system Jacobian, hence controller design involves an inherent system identification problem. In the proposed architecture, LSTM is employed for both system model estimation and for updating the parameters of the PID controller. Namely, the K P , K I and K D gains are computed at every time step by LSTM, so that a cost function which is obtained from tracking error is minimized. The performance of the proposed method has been evaluated on two different nonlinear systems by extensive simulations. Simulation results justify the success of the introduced control architecture.
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-022-10997-1