Loading…
Bi-parameter incremental unknowns ADI iterative methods for elliptic problems
Bi-parameter incremental unknowns (IU) alternating directional implicit (ADI) iterative methods are proposed for solving elliptic problems. Condition numbers of the coefficient matrices for these iterative schemes are carefully estimated. Theoretical analysis shows that the condition numbers are red...
Saved in:
Published in: | Numerical algorithms 2012-07, Vol.60 (3), p.483-499 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bi-parameter incremental unknowns (IU) alternating directional implicit (ADI) iterative methods are proposed for solving elliptic problems. Condition numbers of the coefficient matrices for these iterative schemes are carefully estimated. Theoretical analysis shows that the condition numbers are reduced significantly by IU method, and the iterative sequences produced by the bi-parameter incremental unknowns ADI methods converge to the unique solution of the linear system if the two parameters belong to a given parameter region. Numerical examples are presented to illustrate the correctness of the theoretical analysis and the effectiveness of the bi-parameter incremental unknowns ADI methods. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-011-9525-y |