Loading…
Data-driven cooperative optimal output regulation for linear discrete-time multi-agent systems by online distributed adaptive internal model approach
In this study, a data-driven learning algorithm was developed to estimate the optimal distributed cooperative control policy, which solves the cooperative optimal output regulation problem for linear discrete-time multi-agent systems. Notably, the dynamics of all the agent systems and exo-system is...
Saved in:
Published in: | Science China. Information sciences 2023-07, Vol.66 (7), p.170202, Article 170202 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a data-driven learning algorithm was developed to estimate the optimal distributed cooperative control policy, which solves the cooperative optimal output regulation problem for linear discrete-time multi-agent systems. Notably, the dynamics of all the agent systems and exo-system is completely unknown. By combining adaptive dynamic programming with an internal model, a model-free off-policy learning method is proposed to estimate the optimal control gain and the distributed adaptive internal model by only accessing the measurable data of multi-agent systems. Moreover, different from the traditional cooperative adaptive controller design method, a distributed internal model is approximated online. Convergence and stability analyses show that the estimate controller generated by the proposed data-driven learning algorithm converges to the optimal distributed controller. Finally, simulation results verify the effectiveness of the proposed method. |
---|---|
ISSN: | 1674-733X 1869-1919 |
DOI: | 10.1007/s11432-022-3687-1 |