Loading…

Tree-ring-based drought variability in northern China over the past three centuries

Droughts are the most frequent natural disaster in regions at the margins of the East Asian summer monsoon (EASM), which pose threats to agriculture, the economy, and human lives. However, the limitations of only approximately 60 years of meteorological observations hamper our understanding of the c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geographical sciences 2022-02, Vol.32 (2), p.214-224
Main Authors: Zeng, Xueli, Liu, Yu, Song, Huiming, Li, Qiang, Cai, Qiufang, Fang, Congxi, Sun, Changfeng, Ren, Meng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Droughts are the most frequent natural disaster in regions at the margins of the East Asian summer monsoon (EASM), which pose threats to agriculture, the economy, and human lives. However, the limitations of only approximately 60 years of meteorological observations hamper our understanding of the characteristics and mechanisms of local hydroclimate. Trees growing in the marginal region of the EASM are usually sensitive to moisture variations and have played important roles in past hydroclimatic reconstructions. Here, a 303-year tree-ring-width chronology of Pinus tabulaeformis from Mt. Lama, which is located in the junction of the Liaoning Province and Inner Mongolia, China, was used to reconstruct the May–August Palmer drought severity index (PDSI) in the marginal region of the EASM. The transfer function explains 48.0% (or 47.2% after adjusting for the loss of the degrees of freedom) of the variance over the calibration period from 1946 to 2012. A spatial correlation analysis demonstrates that our PDSI reconstruction can represent the drought variability on the northernmost margin of the EASM. The winter Asian polar vortex area index showed a delayed impact on the summer EASM precipitation in the following year.
ISSN:1009-637X
1861-9568
DOI:10.1007/s11442-022-1943-3