Loading…
Evaluating the impact of sulfamethoxazole on hydrogen production during dark anaerobic sludge fermentation
● SMX promotes hydrogen production from dark anaerobic sludge fermentation. ● SMX significantly enhances the hydrolysis and acidification processes. ● SMX suppresses the methanogenesis process in order to reduce hydrogen consumption. ● SMX enhances the relative abundance of hydrogen-VFAs producers....
Saved in:
Published in: | Frontiers of environmental science & engineering 2023, Vol.17 (1), p.7-7, Article 7 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ● SMX promotes hydrogen production from dark anaerobic sludge fermentation. ● SMX significantly enhances the hydrolysis and acidification processes. ● SMX suppresses the methanogenesis process in order to reduce hydrogen consumption. ● SMX enhances the relative abundance of hydrogen-VFAs producers. ● SMX brings possible environmental risks due to the enrichment of ARGs.
The impact of antibiotics on the environmental protection and sludge treatment fields has been widely studied. The recovery of hydrogen from waste activated sludge (WAS) has become an issue of great interest. Nevertheless, few studies have focused on the impact of antibiotics present in WAS on hydrogen production during dark anaerobic fermentation. To explore the mechanisms, sulfamethoxazole (SMX) was chosen as a representative antibiotic to evaluate how SMX influenced hydrogen production during dark anaerobic fermentation of WAS. The results demonstrated SMX promoted hydrogen production. With increasing additions of SMX from 0 to 500 mg/kg TSS, the cumulative hydrogen production elevated from 8.07 ± 0.37 to 11.89 ± 0.19 mL/g VSS. A modified Gompertz model further verified that both the maximum potential of hydrogen production ( P m ) and the maximum rate of hydrogen production ( R m ) were promoted. SMX did not affected sludge solubilization, but promoted hydrolysis and acidification processes to produce more hydrogen. Moreover, the methanogenesis process was inhibited so that hydrogen consumption was reduced. Microbial community analysis further demonstrated that the introduction of SMX improved the abundance of hydrolysis bacteria and hydrogen-volatile fatty acids (VFAs) producers. SMX synergistically influenced hydrolysis, acidification and acetogenesis to facilitate the hydrogen production. |
---|---|
ISSN: | 2095-2201 2095-221X |
DOI: | 10.1007/s11783-023-1607-2 |