Loading…
A Noise Immune Double Suspended Gate MOSFET for Ultra Low-Power Applications
Purpose The purpose of this paper is to develop the design and analytical modelling of a noise immune double suspended gate MOSFET (DSG-MOSFET) for ultra-low power applications. Also, important performance parameters of the proposed structure such as pull-in and pull-out voltages have been thoroughl...
Saved in:
Published in: | SILICON 2022-07, Vol.14 (10), p.5091-5101 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
The purpose of this paper is to develop the design and analytical modelling of a noise immune double suspended gate MOSFET (DSG-MOSFET) for ultra-low power applications. Also, important performance parameters of the proposed structure such as pull-in and pull-out voltages have been thoroughly investigated with respect to the valuable structural parameters.
Methods
The design methodology used is EKV based analytical approach to calculate the pull-in and pull-out voltages with ingeniously developed boundary conditions which helps achieving reasonably accurate result. Also, the I-V characteristics has been modelled to justify accuracy.
Result
The experimental result shows that the pull-in and pull-out voltages are in millivolts and microvolts range and hence it can be used in ultra-low power applications. As the ratio between the pull-out and the pull-in voltage is 10^(+3) range, justifies that the proposed structure is noise immune. The I
D
-V
GS
characteristic has hysteresis and this sharp transition in pull-in and pull-out voltage indicates that it can be used as an ideal switch with infinite sub-threshold slope.
Conclusion
This paper presents a compact EKV based analytical modelling of pull-in and pull-out voltages for a DSG-MOFET which predict the device characteristics reasonably similar to simulated results. Also, for the first time the noise immunity for a DSGMOSFET has been analyzed. |
---|---|
ISSN: | 1876-990X 1876-9918 |
DOI: | 10.1007/s12633-021-01283-1 |