Loading…

Dynamic management of a deep learning-based anomaly detection system for 5G networks

Fog and mobile edge computing (MEC) will play a key role in the upcoming fifth generation (5G) mobile networks to support decentralized applications, data analytics and management into the network itself by using a highly distributed compute model. Furthermore, increasing attention is paid to provid...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ambient intelligence and humanized computing 2019-08, Vol.10 (8), p.3083-3097
Main Authors: Fernández Maimó, Lorenzo, Huertas Celdrán, Alberto, Gil Pérez, Manuel, García Clemente, Félix J., Martínez Pérez, Gregorio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fog and mobile edge computing (MEC) will play a key role in the upcoming fifth generation (5G) mobile networks to support decentralized applications, data analytics and management into the network itself by using a highly distributed compute model. Furthermore, increasing attention is paid to providing user-centric cybersecurity solutions, which particularly require collecting, processing and analyzing significantly large amount of data traffic and huge number of network connections in 5G networks. In this regard, this paper proposes a MEC-oriented solution in 5G mobile networks to detect network anomalies in real-time and in autonomic way. Our proposal uses deep learning techniques to analyze network flows and to detect network anomalies. Moreover, it uses policies in order to provide an efficient and dynamic management system of the computing resources used in the anomaly detection process. The paper presents relevant aspects of the deployment of the proposal and experimental results to show its performance.
ISSN:1868-5137
1868-5145
DOI:10.1007/s12652-018-0813-4