Loading…
A new rational sine-Gordon expansion method and its application to nonlinear wave equations arising in mathematical physics
. In this paper, a novel approach for constructing exact solutions to nonlinear partial differential equations is presented. The method is designed to be a generalization of the well-known sine-Gordon expansion since it is based on the use of the sine-Gordon equation as an auxiliary equation. In con...
Saved in:
Published in: | European physical journal plus 2019-08, Vol.134 (8), p.380, Article 380 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | .
In this paper, a novel approach for constructing exact solutions to nonlinear partial differential equations is presented. The method is designed to be a generalization of the well-known sine-Gordon expansion since it is based on the use of the sine-Gordon equation as an auxiliary equation. In contrast to the classic sine-Gordon expansion method, it involves a more general ansatz that is a rational function, rather than a polynomial one, of the solutions of the auxiliary equation. This makes the approach introduced capable of capturing more exact solutions than that standard sine-Gordon method. Two important mathematical models arising in nonlinear science, namely, the (2 + 1)-dimensional generalized modified Zakharov-Kuznetsov equation and the (2 + 1) -Dimensional Broer-Kaup-Kupershmidt (BKK) system are used to illustrate the applicability, the simplicity, and the power of this method. As a result, we successfully obtain some solitary solutions that are known in the literature as well as other new soliton and singular soliton solutions. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/i2019-12733-8 |