Loading…

Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential

The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position r −1 ,...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2022-01, Vol.137 (1), p.147, Article 147
Main Authors: Onyenegecha, C. P., Okereke, C. J., Njoku, I. J., Madu, C. A., Ndubuisi, R. U., Nwajeri, U. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position r −1 , square of inverse position, r −2 , kinetic energy, T, potential energy, V, and square of momentum, p 2 , and their respective numerical values are evaluated via the Hellmann–Feynman theorem. Special cases of IQHK potential are also reported.
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/s13360-021-02315-w