Loading…

Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential

The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position r −1 ,...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2022-01, Vol.137 (1), p.147, Article 147
Main Authors: Onyenegecha, C. P., Okereke, C. J., Njoku, I. J., Madu, C. A., Ndubuisi, R. U., Nwajeri, U. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3
cites cdi_FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3
container_end_page
container_issue 1
container_start_page 147
container_title European physical journal plus
container_volume 137
creator Onyenegecha, C. P.
Okereke, C. J.
Njoku, I. J.
Madu, C. A.
Ndubuisi, R. U.
Nwajeri, U. K.
description The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position r −1 , square of inverse position, r −2 , kinetic energy, T, potential energy, V, and square of momentum, p 2 , and their respective numerical values are evaluated via the Hellmann–Feynman theorem. Special cases of IQHK potential are also reported.
doi_str_mv 10.1140/epjp/s13360-021-02315-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919718016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919718016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOOZ-gwFv9KIuX12ayzHUjQ1kuPuQpqe60bVd0u5D8L-broLeGQjJ4bzvm5wnCG4JfiSE4yFUm2roCGMjHGJK_GYkCg8XQY8SicOIc375534dDJzbYL-4JFzyXvA1ripbHtdbXQNyZd7U67JwqMzQm_mwZbou3sEi2DW6bSBdpAiOFZi6q_c6b-AsnxV7sA7yE1o2OrW-bdAU8nyriyKc-_rT59zPltP5A6rKGop6rfOb4CrTuYPBz9kPVs9Pq8k0XLy-zCbjRWgY43UICWUUiOQg0sxg0CROhPQDxSyWVALOYsYikUgqoogm0kihNTMaqBCJSVg_uOti_ag7_99abcrGFv5FRSWRgsSYjLxKdCpjS-csZKqynos9KYJVS1u1tFVHW3na6kxbHbwz7pzOO1pgv_n_Wb8BpXuI_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919718016</pqid></control><display><type>article</type><title>Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential</title><source>Springer Nature</source><creator>Onyenegecha, C. P. ; Okereke, C. J. ; Njoku, I. J. ; Madu, C. A. ; Ndubuisi, R. U. ; Nwajeri, U. K.</creator><creatorcontrib>Onyenegecha, C. P. ; Okereke, C. J. ; Njoku, I. J. ; Madu, C. A. ; Ndubuisi, R. U. ; Nwajeri, U. K.</creatorcontrib><description>The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position r −1 , square of inverse position, r −2 , kinetic energy, T, potential energy, V, and square of momentum, p 2 , and their respective numerical values are evaluated via the Hellmann–Feynman theorem. Special cases of IQHK potential are also reported.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-02315-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Eigenvalues ; Energy ; Equilibrium ; Kinetic energy ; Mathematical and Computational Physics ; Molecular ; Nonlinear equations ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Potential energy ; Quantum dots ; Regular Article ; Schrodinger equation ; Theoretical ; Wave functions</subject><ispartof>European physical journal plus, 2022-01, Vol.137 (1), p.147, Article 147</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3</citedby><cites>FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3</cites><orcidid>0000-0002-7287-4650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Onyenegecha, C. P.</creatorcontrib><creatorcontrib>Okereke, C. J.</creatorcontrib><creatorcontrib>Njoku, I. J.</creatorcontrib><creatorcontrib>Madu, C. A.</creatorcontrib><creatorcontrib>Ndubuisi, R. U.</creatorcontrib><creatorcontrib>Nwajeri, U. K.</creatorcontrib><title>Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position r −1 , square of inverse position, r −2 , kinetic energy, T, potential energy, V, and square of momentum, p 2 , and their respective numerical values are evaluated via the Hellmann–Feynman theorem. Special cases of IQHK potential are also reported.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvalues</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Kinetic energy</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nonlinear equations</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential energy</subject><subject>Quantum dots</subject><subject>Regular Article</subject><subject>Schrodinger equation</subject><subject>Theoretical</subject><subject>Wave functions</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhosoOOZ-gwFv9KIuX12ayzHUjQ1kuPuQpqe60bVd0u5D8L-broLeGQjJ4bzvm5wnCG4JfiSE4yFUm2roCGMjHGJK_GYkCg8XQY8SicOIc375534dDJzbYL-4JFzyXvA1ripbHtdbXQNyZd7U67JwqMzQm_mwZbou3sEi2DW6bSBdpAiOFZi6q_c6b-AsnxV7sA7yE1o2OrW-bdAU8nyriyKc-_rT59zPltP5A6rKGop6rfOb4CrTuYPBz9kPVs9Pq8k0XLy-zCbjRWgY43UICWUUiOQg0sxg0CROhPQDxSyWVALOYsYikUgqoogm0kihNTMaqBCJSVg_uOti_ag7_99abcrGFv5FRSWRgsSYjLxKdCpjS-csZKqynos9KYJVS1u1tFVHW3na6kxbHbwz7pzOO1pgv_n_Wb8BpXuI_Q</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Onyenegecha, C. P.</creator><creator>Okereke, C. J.</creator><creator>Njoku, I. J.</creator><creator>Madu, C. A.</creator><creator>Ndubuisi, R. U.</creator><creator>Nwajeri, U. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7287-4650</orcidid></search><sort><creationdate>20220101</creationdate><title>Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential</title><author>Onyenegecha, C. P. ; Okereke, C. J. ; Njoku, I. J. ; Madu, C. A. ; Ndubuisi, R. U. ; Nwajeri, U. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvalues</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Kinetic energy</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nonlinear equations</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential energy</topic><topic>Quantum dots</topic><topic>Regular Article</topic><topic>Schrodinger equation</topic><topic>Theoretical</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onyenegecha, C. P.</creatorcontrib><creatorcontrib>Okereke, C. J.</creatorcontrib><creatorcontrib>Njoku, I. J.</creatorcontrib><creatorcontrib>Madu, C. A.</creatorcontrib><creatorcontrib>Ndubuisi, R. U.</creatorcontrib><creatorcontrib>Nwajeri, U. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onyenegecha, C. P.</au><au>Okereke, C. J.</au><au>Njoku, I. J.</au><au>Madu, C. A.</au><au>Ndubuisi, R. U.</au><au>Nwajeri, U. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>137</volume><issue>1</issue><spage>147</spage><pages>147-</pages><artnum>147</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position r −1 , square of inverse position, r −2 , kinetic energy, T, potential energy, V, and square of momentum, p 2 , and their respective numerical values are evaluated via the Hellmann–Feynman theorem. Special cases of IQHK potential are also reported.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-02315-w</doi><orcidid>https://orcid.org/0000-0002-7287-4650</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2022-01, Vol.137 (1), p.147, Article 147
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919718016
source Springer Nature
subjects Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Eigenvalues
Energy
Equilibrium
Kinetic energy
Mathematical and Computational Physics
Molecular
Nonlinear equations
Optical and Plasma Physics
Physics
Physics and Astronomy
Potential energy
Quantum dots
Regular Article
Schrodinger equation
Theoretical
Wave functions
title Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20solutions%20of%20Schrodinger%20equation%20and%20expectation%20values%20of%20Inversely%20Quadratic%20Hellmann-Kratzer%20(IQHK)%20potential&rft.jtitle=European%20physical%20journal%20plus&rft.au=Onyenegecha,%20C.%20P.&rft.date=2022-01-01&rft.volume=137&rft.issue=1&rft.spage=147&rft.pages=147-&rft.artnum=147&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-02315-w&rft_dat=%3Cproquest_cross%3E2919718016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919718016&rft_id=info:pmid/&rfr_iscdi=true