Loading…
Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential
The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position r −1 ,...
Saved in:
Published in: | European physical journal plus 2022-01, Vol.137 (1), p.147, Article 147 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3 |
container_end_page | |
container_issue | 1 |
container_start_page | 147 |
container_title | European physical journal plus |
container_volume | 137 |
creator | Onyenegecha, C. P. Okereke, C. J. Njoku, I. J. Madu, C. A. Ndubuisi, R. U. Nwajeri, U. K. |
description | The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position
r
−1
, square of inverse position,
r
−2
,
kinetic energy,
T,
potential energy,
V,
and square of momentum,
p
2
, and their respective numerical values are evaluated via the Hellmann–Feynman theorem. Special cases of IQHK potential are also reported. |
doi_str_mv | 10.1140/epjp/s13360-021-02315-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919718016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919718016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOOZ-gwFv9KIuX12ayzHUjQ1kuPuQpqe60bVd0u5D8L-broLeGQjJ4bzvm5wnCG4JfiSE4yFUm2roCGMjHGJK_GYkCg8XQY8SicOIc375534dDJzbYL-4JFzyXvA1ripbHtdbXQNyZd7U67JwqMzQm_mwZbou3sEi2DW6bSBdpAiOFZi6q_c6b-AsnxV7sA7yE1o2OrW-bdAU8nyriyKc-_rT59zPltP5A6rKGop6rfOb4CrTuYPBz9kPVs9Pq8k0XLy-zCbjRWgY43UICWUUiOQg0sxg0CROhPQDxSyWVALOYsYikUgqoogm0kihNTMaqBCJSVg_uOti_ag7_99abcrGFv5FRSWRgsSYjLxKdCpjS-csZKqynos9KYJVS1u1tFVHW3na6kxbHbwz7pzOO1pgv_n_Wb8BpXuI_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919718016</pqid></control><display><type>article</type><title>Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential</title><source>Springer Nature</source><creator>Onyenegecha, C. P. ; Okereke, C. J. ; Njoku, I. J. ; Madu, C. A. ; Ndubuisi, R. U. ; Nwajeri, U. K.</creator><creatorcontrib>Onyenegecha, C. P. ; Okereke, C. J. ; Njoku, I. J. ; Madu, C. A. ; Ndubuisi, R. U. ; Nwajeri, U. K.</creatorcontrib><description>The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position
r
−1
, square of inverse position,
r
−2
,
kinetic energy,
T,
potential energy,
V,
and square of momentum,
p
2
, and their respective numerical values are evaluated via the Hellmann–Feynman theorem. Special cases of IQHK potential are also reported.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-02315-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Eigenvalues ; Energy ; Equilibrium ; Kinetic energy ; Mathematical and Computational Physics ; Molecular ; Nonlinear equations ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Potential energy ; Quantum dots ; Regular Article ; Schrodinger equation ; Theoretical ; Wave functions</subject><ispartof>European physical journal plus, 2022-01, Vol.137 (1), p.147, Article 147</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3</citedby><cites>FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3</cites><orcidid>0000-0002-7287-4650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Onyenegecha, C. P.</creatorcontrib><creatorcontrib>Okereke, C. J.</creatorcontrib><creatorcontrib>Njoku, I. J.</creatorcontrib><creatorcontrib>Madu, C. A.</creatorcontrib><creatorcontrib>Ndubuisi, R. U.</creatorcontrib><creatorcontrib>Nwajeri, U. K.</creatorcontrib><title>Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position
r
−1
, square of inverse position,
r
−2
,
kinetic energy,
T,
potential energy,
V,
and square of momentum,
p
2
, and their respective numerical values are evaluated via the Hellmann–Feynman theorem. Special cases of IQHK potential are also reported.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvalues</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Kinetic energy</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nonlinear equations</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential energy</subject><subject>Quantum dots</subject><subject>Regular Article</subject><subject>Schrodinger equation</subject><subject>Theoretical</subject><subject>Wave functions</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhosoOOZ-gwFv9KIuX12ayzHUjQ1kuPuQpqe60bVd0u5D8L-broLeGQjJ4bzvm5wnCG4JfiSE4yFUm2roCGMjHGJK_GYkCg8XQY8SicOIc375534dDJzbYL-4JFzyXvA1ripbHtdbXQNyZd7U67JwqMzQm_mwZbou3sEi2DW6bSBdpAiOFZi6q_c6b-AsnxV7sA7yE1o2OrW-bdAU8nyriyKc-_rT59zPltP5A6rKGop6rfOb4CrTuYPBz9kPVs9Pq8k0XLy-zCbjRWgY43UICWUUiOQg0sxg0CROhPQDxSyWVALOYsYikUgqoogm0kihNTMaqBCJSVg_uOti_ag7_99abcrGFv5FRSWRgsSYjLxKdCpjS-csZKqynos9KYJVS1u1tFVHW3na6kxbHbwz7pzOO1pgv_n_Wb8BpXuI_Q</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Onyenegecha, C. P.</creator><creator>Okereke, C. J.</creator><creator>Njoku, I. J.</creator><creator>Madu, C. A.</creator><creator>Ndubuisi, R. U.</creator><creator>Nwajeri, U. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7287-4650</orcidid></search><sort><creationdate>20220101</creationdate><title>Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential</title><author>Onyenegecha, C. P. ; Okereke, C. J. ; Njoku, I. J. ; Madu, C. A. ; Ndubuisi, R. U. ; Nwajeri, U. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvalues</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Kinetic energy</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nonlinear equations</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential energy</topic><topic>Quantum dots</topic><topic>Regular Article</topic><topic>Schrodinger equation</topic><topic>Theoretical</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onyenegecha, C. P.</creatorcontrib><creatorcontrib>Okereke, C. J.</creatorcontrib><creatorcontrib>Njoku, I. J.</creatorcontrib><creatorcontrib>Madu, C. A.</creatorcontrib><creatorcontrib>Ndubuisi, R. U.</creatorcontrib><creatorcontrib>Nwajeri, U. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onyenegecha, C. P.</au><au>Okereke, C. J.</au><au>Njoku, I. J.</au><au>Madu, C. A.</au><au>Ndubuisi, R. U.</au><au>Nwajeri, U. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>137</volume><issue>1</issue><spage>147</spage><pages>147-</pages><artnum>147</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The study presents approximate solutions of Schrodinger equation with the Inversely quadratic Hellmann-Kratzer (IQHK) potential. The energy eigenvalues and corresponding wavefunctions are obtained analytically using the Nikiforov-Uvarov (NU) method. The expectation values of inverse position
r
−1
, square of inverse position,
r
−2
,
kinetic energy,
T,
potential energy,
V,
and square of momentum,
p
2
, and their respective numerical values are evaluated via the Hellmann–Feynman theorem. Special cases of IQHK potential are also reported.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-02315-w</doi><orcidid>https://orcid.org/0000-0002-7287-4650</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2022-01, Vol.137 (1), p.147, Article 147 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919718016 |
source | Springer Nature |
subjects | Applied and Technical Physics Atomic Complex Systems Condensed Matter Physics Eigenvalues Energy Equilibrium Kinetic energy Mathematical and Computational Physics Molecular Nonlinear equations Optical and Plasma Physics Physics Physics and Astronomy Potential energy Quantum dots Regular Article Schrodinger equation Theoretical Wave functions |
title | Approximate solutions of Schrodinger equation and expectation values of Inversely Quadratic Hellmann-Kratzer (IQHK) potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20solutions%20of%20Schrodinger%20equation%20and%20expectation%20values%20of%20Inversely%20Quadratic%20Hellmann-Kratzer%20(IQHK)%20potential&rft.jtitle=European%20physical%20journal%20plus&rft.au=Onyenegecha,%20C.%20P.&rft.date=2022-01-01&rft.volume=137&rft.issue=1&rft.spage=147&rft.pages=147-&rft.artnum=147&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-02315-w&rft_dat=%3Cproquest_cross%3E2919718016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-eb232e194e7dfc0ea18b79544838929e0f83357b927552b9c97aa3cae277bcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919718016&rft_id=info:pmid/&rfr_iscdi=true |