Loading…
Multi-Bin search: improved large-scale content-based image retrieval
The challenge of large-scale content-based image retrieval (CBIR) has been recently addressed by many promising approaches. In this work, a new approach that jointly optimizes the search precision and time for large-scale CBIR is presented. This is achieved using binary local image descriptors, such...
Saved in:
Published in: | International journal of multimedia information retrieval 2015-09, Vol.4 (3), p.205-216 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The challenge of large-scale content-based image retrieval (CBIR) has been recently addressed by many promising approaches. In this work, a new approach that jointly optimizes the search precision and time for large-scale CBIR is presented. This is achieved using binary local image descriptors, such as BRIEF or BRISK, along with binary hashing methods, such as Locality-Sensitive Hashing and Spherical Hashing (SH). The proposed approach, named
Multi-Bin Search
, improves the retrieval precision of binary hashing methods through computing, storing and indexing the nearest neighbor bins for each bin generated from a binary hashing method. Then, the search process does not only search the targeted bin, but also it searches the nearest neighbor bins. To efficiently search inside targeted bins, a fast exhaustive-search equivalent algorithm, inspired by Norm Ordered Matching, has been used. Also, a result reranking step that increases the retrieval precision is introduced, but with a slight increase in search time. Experimental evaluations over famous benchmarking datasets (such as the University of Kentucky Benchmarking, the INRIA Holidays, and the MIRFLICKR-1M) show that the proposed approach highly improves the retrieval precision of the state-of-art binary hashing methods. |
---|---|
ISSN: | 2192-6611 2192-662X |
DOI: | 10.1007/s13735-014-0061-0 |