Loading…
Kuznetsov–Ma breather-like solutions in the Salerno model
The Salerno model is a discrete variant of the celebrated nonlinear Schrödinger (NLS) equation interpolating between the discrete NLS (DNLS) equation and completely integrable Ablowitz–Ladik (AL) model by appropriately tuning the relevant homotopy parameter. Although the AL model possesses an explic...
Saved in:
Published in: | European physical journal plus 2020-07, Vol.135 (7), p.607, Article 607 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Salerno model is a discrete variant of the celebrated nonlinear Schrödinger (NLS) equation interpolating between the discrete NLS (DNLS) equation and completely integrable Ablowitz–Ladik (AL) model by appropriately tuning the relevant homotopy parameter. Although the AL model possesses an explicit time-periodic solution known as the Kuznetsov–Ma (KM) breather, the existence of time-periodic solutions away from the integrable limit has not been studied as of yet. It is thus the purpose of this work to shed light on the existence and stability of time-periodic solutions of the Salerno model. In particular, we vary the homotopy parameter of the model by employing a pseudo-arclength continuation algorithm where time-periodic solutions are identified via fixed-point iterations. We show that the solutions transform into time-periodic patterns featuring small, yet non-decaying far-field oscillations. Remarkably, our numerical results support the existence of previously unknown time-periodic solutions
even
at the integrable case whose stability is explored by using Floquet theory. A continuation of these patterns towards the DNLS limit is also discussed. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/s13360-020-00596-1 |