Loading…

Pivot selection for metric-space indexing

Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider...

Full description

Saved in:
Bibliographic Details
Published in:International journal of machine learning and cybernetics 2016-04, Vol.7 (2), p.311-323
Main Authors: Mao, Rui, Zhang, Peihan, Li, Xingliang, Liu, Xi, Lu, Minhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-016-0504-4