Loading…

Pivot selection for metric-space indexing

Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider...

Full description

Saved in:
Bibliographic Details
Published in:International journal of machine learning and cybernetics 2016-04, Vol.7 (2), p.311-323
Main Authors: Mao, Rui, Zhang, Peihan, Li, Xingliang, Liu, Xi, Lu, Minhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33
cites cdi_FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33
container_end_page 323
container_issue 2
container_start_page 311
container_title International journal of machine learning and cybernetics
container_volume 7
creator Mao, Rui
Zhang, Peihan
Li, Xingliang
Liu, Xi
Lu, Minhua
description Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.
doi_str_mv 10.1007/s13042-016-0504-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919910081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919910081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wVPHmITj6aJkdZ_IIFPSh4C2k6XbLstjXpiv57s1T05Bxm5vC-7zAPIecMrhhAdZ2YAMkpMEWhBEnlEZkxrTTVoN-Of_eKnZJFShvIpUAI4DNy-Rw--rFIuEU_hr4r2j4WOxxj8DQNzmMRugY_Q7c-Iyet2yZc_Mw5eb27fVk-0NXT_ePyZkW9YGqkUmlRclPqshGVaip0shZOcOc98974ymhomlrmBhydc1mmNRrQZVubWog5uZhyh9i_7zGNdtPvY5dPWm6YMfljzbKKTSof-5QitnaIYefil2VgD1DsBMVmKPYAxcrs4ZMnZW23xviX_L_pG8rZYuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919910081</pqid></control><display><type>article</type><title>Pivot selection for metric-space indexing</title><source>Springer Link</source><creator>Mao, Rui ; Zhang, Peihan ; Li, Xingliang ; Liu, Xi ; Lu, Minhua</creator><creatorcontrib>Mao, Rui ; Zhang, Peihan ; Li, Xingliang ; Liu, Xi ; Lu, Minhua</creatorcontrib><description>Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-016-0504-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Big Data ; Complex Systems ; Computational Intelligence ; Control ; Data points ; Data processing ; Datasets ; Engineering ; Heuristic ; Indexing ; Mechatronics ; Metric space ; Original Article ; Pattern Recognition ; Pivots ; Robotics ; Sampling ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2016-04, Vol.7 (2), p.311-323</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33</citedby><cites>FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Zhang, Peihan</creatorcontrib><creatorcontrib>Li, Xingliang</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Lu, Minhua</creatorcontrib><title>Pivot selection for metric-space indexing</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data points</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Heuristic</subject><subject>Indexing</subject><subject>Mechatronics</subject><subject>Metric space</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Pivots</subject><subject>Robotics</subject><subject>Sampling</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wVPHmITj6aJkdZ_IIFPSh4C2k6XbLstjXpiv57s1T05Bxm5vC-7zAPIecMrhhAdZ2YAMkpMEWhBEnlEZkxrTTVoN-Of_eKnZJFShvIpUAI4DNy-Rw--rFIuEU_hr4r2j4WOxxj8DQNzmMRugY_Q7c-Iyet2yZc_Mw5eb27fVk-0NXT_ePyZkW9YGqkUmlRclPqshGVaip0shZOcOc98974ymhomlrmBhydc1mmNRrQZVubWog5uZhyh9i_7zGNdtPvY5dPWm6YMfljzbKKTSof-5QitnaIYefil2VgD1DsBMVmKPYAxcrs4ZMnZW23xviX_L_pG8rZYuE</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Mao, Rui</creator><creator>Zhang, Peihan</creator><creator>Li, Xingliang</creator><creator>Liu, Xi</creator><creator>Lu, Minhua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20160401</creationdate><title>Pivot selection for metric-space indexing</title><author>Mao, Rui ; Zhang, Peihan ; Li, Xingliang ; Liu, Xi ; Lu, Minhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data points</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Heuristic</topic><topic>Indexing</topic><topic>Mechatronics</topic><topic>Metric space</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Pivots</topic><topic>Robotics</topic><topic>Sampling</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Zhang, Peihan</creatorcontrib><creatorcontrib>Li, Xingliang</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Lu, Minhua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Rui</au><au>Zhang, Peihan</au><au>Li, Xingliang</au><au>Liu, Xi</au><au>Lu, Minhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pivot selection for metric-space indexing</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>7</volume><issue>2</issue><spage>311</spage><epage>323</epage><pages>311-323</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-016-0504-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2016-04, Vol.7 (2), p.311-323
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2919910081
source Springer Link
subjects Algorithms
Artificial Intelligence
Big Data
Complex Systems
Computational Intelligence
Control
Data points
Data processing
Datasets
Engineering
Heuristic
Indexing
Mechatronics
Metric space
Original Article
Pattern Recognition
Pivots
Robotics
Sampling
Systems Biology
title Pivot selection for metric-space indexing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pivot%20selection%20for%20metric-space%20indexing&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Mao,%20Rui&rft.date=2016-04-01&rft.volume=7&rft.issue=2&rft.spage=311&rft.epage=323&rft.pages=311-323&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-016-0504-4&rft_dat=%3Cproquest_cross%3E2919910081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919910081&rft_id=info:pmid/&rfr_iscdi=true