Loading…
Pivot selection for metric-space indexing
Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider...
Saved in:
Published in: | International journal of machine learning and cybernetics 2016-04, Vol.7 (2), p.311-323 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33 |
container_end_page | 323 |
container_issue | 2 |
container_start_page | 311 |
container_title | International journal of machine learning and cybernetics |
container_volume | 7 |
creator | Mao, Rui Zhang, Peihan Li, Xingliang Liu, Xi Lu, Minhua |
description | Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance. |
doi_str_mv | 10.1007/s13042-016-0504-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919910081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919910081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wVPHmITj6aJkdZ_IIFPSh4C2k6XbLstjXpiv57s1T05Bxm5vC-7zAPIecMrhhAdZ2YAMkpMEWhBEnlEZkxrTTVoN-Of_eKnZJFShvIpUAI4DNy-Rw--rFIuEU_hr4r2j4WOxxj8DQNzmMRugY_Q7c-Iyet2yZc_Mw5eb27fVk-0NXT_ePyZkW9YGqkUmlRclPqshGVaip0shZOcOc98974ymhomlrmBhydc1mmNRrQZVubWog5uZhyh9i_7zGNdtPvY5dPWm6YMfljzbKKTSof-5QitnaIYefil2VgD1DsBMVmKPYAxcrs4ZMnZW23xviX_L_pG8rZYuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919910081</pqid></control><display><type>article</type><title>Pivot selection for metric-space indexing</title><source>Springer Link</source><creator>Mao, Rui ; Zhang, Peihan ; Li, Xingliang ; Liu, Xi ; Lu, Minhua</creator><creatorcontrib>Mao, Rui ; Zhang, Peihan ; Li, Xingliang ; Liu, Xi ; Lu, Minhua</creatorcontrib><description>Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-016-0504-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Big Data ; Complex Systems ; Computational Intelligence ; Control ; Data points ; Data processing ; Datasets ; Engineering ; Heuristic ; Indexing ; Mechatronics ; Metric space ; Original Article ; Pattern Recognition ; Pivots ; Robotics ; Sampling ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2016-04, Vol.7 (2), p.311-323</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33</citedby><cites>FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Zhang, Peihan</creatorcontrib><creatorcontrib>Li, Xingliang</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Lu, Minhua</creatorcontrib><title>Pivot selection for metric-space indexing</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data points</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Heuristic</subject><subject>Indexing</subject><subject>Mechatronics</subject><subject>Metric space</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Pivots</subject><subject>Robotics</subject><subject>Sampling</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wVPHmITj6aJkdZ_IIFPSh4C2k6XbLstjXpiv57s1T05Bxm5vC-7zAPIecMrhhAdZ2YAMkpMEWhBEnlEZkxrTTVoN-Of_eKnZJFShvIpUAI4DNy-Rw--rFIuEU_hr4r2j4WOxxj8DQNzmMRugY_Q7c-Iyet2yZc_Mw5eb27fVk-0NXT_ePyZkW9YGqkUmlRclPqshGVaip0shZOcOc98974ymhomlrmBhydc1mmNRrQZVubWog5uZhyh9i_7zGNdtPvY5dPWm6YMfljzbKKTSof-5QitnaIYefil2VgD1DsBMVmKPYAxcrs4ZMnZW23xviX_L_pG8rZYuE</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Mao, Rui</creator><creator>Zhang, Peihan</creator><creator>Li, Xingliang</creator><creator>Liu, Xi</creator><creator>Lu, Minhua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20160401</creationdate><title>Pivot selection for metric-space indexing</title><author>Mao, Rui ; Zhang, Peihan ; Li, Xingliang ; Liu, Xi ; Lu, Minhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data points</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Heuristic</topic><topic>Indexing</topic><topic>Mechatronics</topic><topic>Metric space</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Pivots</topic><topic>Robotics</topic><topic>Sampling</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Zhang, Peihan</creatorcontrib><creatorcontrib>Li, Xingliang</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Lu, Minhua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Rui</au><au>Zhang, Peihan</au><au>Li, Xingliang</au><au>Liu, Xi</au><au>Lu, Minhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pivot selection for metric-space indexing</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>7</volume><issue>2</issue><spage>311</spage><epage>323</epage><pages>311-323</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-016-0504-4</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2016-04, Vol.7 (2), p.311-323 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2919910081 |
source | Springer Link |
subjects | Algorithms Artificial Intelligence Big Data Complex Systems Computational Intelligence Control Data points Data processing Datasets Engineering Heuristic Indexing Mechatronics Metric space Original Article Pattern Recognition Pivots Robotics Sampling Systems Biology |
title | Pivot selection for metric-space indexing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pivot%20selection%20for%20metric-space%20indexing&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Mao,%20Rui&rft.date=2016-04-01&rft.volume=7&rft.issue=2&rft.spage=311&rft.epage=323&rft.pages=311-323&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-016-0504-4&rft_dat=%3Cproquest_cross%3E2919910081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-4683529585d376d7ea4b3a32acc1cc9c7980ddb40dd02eaaad3788e9085fb9b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919910081&rft_id=info:pmid/&rfr_iscdi=true |