Loading…
Diverse oscillating soliton structures for the (2+1)-dimensional Nizhnik–Novikov–Veselov equation
A new type of variable separation solutions for the (2+1)-dimensional Nizhnik–Novikov–Veselov equation is derived by means of an improved mapping approach. Based on the derived variable separation excitation, rich oscillating solitons such as rogue-wave, dromion, multi-dromion, solitoff, lump and fr...
Saved in:
Published in: | European physical journal plus 2020-01, Vol.135 (1), p.8, Article 8 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new type of variable separation solutions for the (2+1)-dimensional Nizhnik–Novikov–Veselov equation is derived by means of an improved mapping approach. Based on the derived variable separation excitation, rich oscillating solitons such as rogue-wave, dromion, multi-dromion, solitoff, lump and fractal-type structures are presented by selecting appropriate functions of the general variable separation solution, and some of these solutions exhibit a rich dynamic, with a wide variety of qualitative behavior and structures that are exponentially localized, showing some novel features and interesting behaviors. |
---|---|
ISSN: | 2190-5444 2190-5444 |
DOI: | 10.1140/epjp/s13360-019-00019-w |