Loading…

1-Bit FinFET Carry Cells for Low Voltage High-Speed Digital Signal Processing Applications

In this paper, new high speed and low voltage 1-bit FinFET full adder carry cells are proposed for multi-bit arithmetic applications used in Digital Signal Processing (DSP) architectures. The full adder carry cells are important blocks for producing all arithmetic results such as multiplication, sub...

Full description

Saved in:
Bibliographic Details
Published in:SILICON 2023, Vol.15 (2), p.713-724
Main Authors: Pittala, Chandra Shaker, Vijay, Vallabhuni, Reddy, B. Naresh Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, new high speed and low voltage 1-bit FinFET full adder carry cells are proposed for multi-bit arithmetic applications used in Digital Signal Processing (DSP) architectures. The full adder carry cells are important blocks for producing all arithmetic results such as multiplication, subtraction and addition. The main purpose of this work is to decrease the propagation delay and total power dissipation of the full adder circuit in multi-bit adder applications. Similarly, the proposed carry circuits also reduce the total chip area as it requires few transistors to perform the carry operation. Carry cell, XOR gate and sum circuit are used to produce the full adder operation. This article also presents eight new full adder circuits based on the new carry circuit designs. FinFET 18 nm technology used to design and test the proposed carry and full adder circuits with 0.5 V supply voltage. Cadence virtuoso model parameters have been used to design and test the proposed and existing designs in the literature. Several simulation results indicate that the proposed circuits outperform standard full adders in terms of power delay product (PDP), delay and power. The 8-bit Ripple Carry Adder (RCA) circuit was also designed to verify the functionality of the proposed carry and full adder circuits. When compared to existing full adder circuits based RCAs, the proposed full adder circuits based RCA results were found to be with less delay. All the proposed and existing circuits are investigated in terms of delay, power and PDP with different output load capacitances and supply voltages.
ISSN:1876-990X
1876-9918
DOI:10.1007/s12633-022-02016-8