Loading…

Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories

Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been d...

Full description

Saved in:
Bibliographic Details
Published in:International journal of mechanics and materials in design 2024-02, Vol.20 (1), p.107-127
Main Authors: Zeng, Jin, Yang, Yang, Ma, Hui, Yang, Yiren, Fan, Chenguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been developed for the shaft-disk-blade coupling system using an in-house code that integrates the Timoshenko beam and Mindlin-Reissner shell elements. In addition, two critical issues concerning the couplings of the shaft-disk and disk-blade are successfully addressed by using the penalty method in conjunction with the compatibility equation of deformation. Subsequently, the improved modelling strategies for the shaft-disk coupling system, with and without blade components, are verified by comparing their static/dynamic frequencies and modal shapes with those obtained from experiments and solid models in ANSYS. The results indicate that the beam-shell hybrid model exhibits good accuracy and high efficiency in simulating the dynamic characteristics of the shaft-disk coupling system with and without blades. The modal characteristics of the entire rotor system have a series of flexible vibration modes, including bending/torsion/axial mode for the shaft, pitch diameter/umbrella-type mode for the disk, and bending mode for the blade.
ISSN:1569-1713
1573-8841
DOI:10.1007/s10999-023-09664-7