Loading…

Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories

Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been d...

Full description

Saved in:
Bibliographic Details
Published in:International journal of mechanics and materials in design 2024-02, Vol.20 (1), p.107-127
Main Authors: Zeng, Jin, Yang, Yang, Ma, Hui, Yang, Yiren, Fan, Chenguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-a6eeadd800eed30171adea7d2c21be0d05a6b144791ea22011ad61e1512db323
cites cdi_FETCH-LOGICAL-c319t-a6eeadd800eed30171adea7d2c21be0d05a6b144791ea22011ad61e1512db323
container_end_page 127
container_issue 1
container_start_page 107
container_title International journal of mechanics and materials in design
container_volume 20
creator Zeng, Jin
Yang, Yang
Ma, Hui
Yang, Yiren
Fan, Chenguang
description Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been developed for the shaft-disk-blade coupling system using an in-house code that integrates the Timoshenko beam and Mindlin-Reissner shell elements. In addition, two critical issues concerning the couplings of the shaft-disk and disk-blade are successfully addressed by using the penalty method in conjunction with the compatibility equation of deformation. Subsequently, the improved modelling strategies for the shaft-disk coupling system, with and without blade components, are verified by comparing their static/dynamic frequencies and modal shapes with those obtained from experiments and solid models in ANSYS. The results indicate that the beam-shell hybrid model exhibits good accuracy and high efficiency in simulating the dynamic characteristics of the shaft-disk coupling system with and without blades. The modal characteristics of the entire rotor system have a series of flexible vibration modes, including bending/torsion/axial mode for the shaft, pitch diameter/umbrella-type mode for the disk, and bending mode for the blade.
doi_str_mv 10.1007/s10999-023-09664-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920616503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920616503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a6eeadd800eed30171adea7d2c21be0d05a6b144791ea22011ad61e1512db323</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTbM2EmcLFF5SpXYdG858aRNyaPY6SJ_j0uQ2LGyZZ9zZ3QZu0W4RwD9EBCKohAglYAiyxKhz9gCU61Enid4frpnhUCN6pJdhbAHUIB5vmDuaept11S8Gxy1bdNveRi9HWk78aHmloedrUfhmvApytY64tVwPMzcFEbqeNNHOBqnp5Jsx23vohXD-LijwTcUrtlFbdtAN7_nkm1enjerN7H-eH1fPa5FpbAYhc2IrHM5AJGL-2mM86x2spJYEjhIbVZikugCyUoJGP8zJExRulJJtWR3c-zBD19HCqPZD0ffx4lGFhIyzFJQkZIzVfkhBE-1Ofims34yCOZUppnLNLFM81Om0VFSsxQi3G_J_0X_Y30DTM54-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920616503</pqid></control><display><type>article</type><title>Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories</title><source>Springer Nature</source><creator>Zeng, Jin ; Yang, Yang ; Ma, Hui ; Yang, Yiren ; Fan, Chenguang</creator><creatorcontrib>Zeng, Jin ; Yang, Yang ; Ma, Hui ; Yang, Yiren ; Fan, Chenguang</creatorcontrib><description>Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been developed for the shaft-disk-blade coupling system using an in-house code that integrates the Timoshenko beam and Mindlin-Reissner shell elements. In addition, two critical issues concerning the couplings of the shaft-disk and disk-blade are successfully addressed by using the penalty method in conjunction with the compatibility equation of deformation. Subsequently, the improved modelling strategies for the shaft-disk coupling system, with and without blade components, are verified by comparing their static/dynamic frequencies and modal shapes with those obtained from experiments and solid models in ANSYS. The results indicate that the beam-shell hybrid model exhibits good accuracy and high efficiency in simulating the dynamic characteristics of the shaft-disk coupling system with and without blades. The modal characteristics of the entire rotor system have a series of flexible vibration modes, including bending/torsion/axial mode for the shaft, pitch diameter/umbrella-type mode for the disk, and bending mode for the blade.</description><identifier>ISSN: 1569-1713</identifier><identifier>EISSN: 1573-8841</identifier><identifier>DOI: 10.1007/s10999-023-09664-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bending ; Characterization and Evaluation of Materials ; Classical Mechanics ; Couplings ; Dynamic characteristics ; Dynamic models ; Engineering ; Engineering Design ; Mindlin plates ; Model accuracy ; Modelling ; Rotating shafts ; Rotors ; Solid Mechanics ; Timoshenko beams ; Vibration mode</subject><ispartof>International journal of mechanics and materials in design, 2024-02, Vol.20 (1), p.107-127</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a6eeadd800eed30171adea7d2c21be0d05a6b144791ea22011ad61e1512db323</citedby><cites>FETCH-LOGICAL-c319t-a6eeadd800eed30171adea7d2c21be0d05a6b144791ea22011ad61e1512db323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zeng, Jin</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Yang, Yiren</creatorcontrib><creatorcontrib>Fan, Chenguang</creatorcontrib><title>Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories</title><title>International journal of mechanics and materials in design</title><addtitle>Int J Mech Mater Des</addtitle><description>Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been developed for the shaft-disk-blade coupling system using an in-house code that integrates the Timoshenko beam and Mindlin-Reissner shell elements. In addition, two critical issues concerning the couplings of the shaft-disk and disk-blade are successfully addressed by using the penalty method in conjunction with the compatibility equation of deformation. Subsequently, the improved modelling strategies for the shaft-disk coupling system, with and without blade components, are verified by comparing their static/dynamic frequencies and modal shapes with those obtained from experiments and solid models in ANSYS. The results indicate that the beam-shell hybrid model exhibits good accuracy and high efficiency in simulating the dynamic characteristics of the shaft-disk coupling system with and without blades. The modal characteristics of the entire rotor system have a series of flexible vibration modes, including bending/torsion/axial mode for the shaft, pitch diameter/umbrella-type mode for the disk, and bending mode for the blade.</description><subject>Bending</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Couplings</subject><subject>Dynamic characteristics</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Mindlin plates</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Rotating shafts</subject><subject>Rotors</subject><subject>Solid Mechanics</subject><subject>Timoshenko beams</subject><subject>Vibration mode</subject><issn>1569-1713</issn><issn>1573-8841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTbM2EmcLFF5SpXYdG858aRNyaPY6SJ_j0uQ2LGyZZ9zZ3QZu0W4RwD9EBCKohAglYAiyxKhz9gCU61Enid4frpnhUCN6pJdhbAHUIB5vmDuaept11S8Gxy1bdNveRi9HWk78aHmloedrUfhmvApytY64tVwPMzcFEbqeNNHOBqnp5Jsx23vohXD-LijwTcUrtlFbdtAN7_nkm1enjerN7H-eH1fPa5FpbAYhc2IrHM5AJGL-2mM86x2spJYEjhIbVZikugCyUoJGP8zJExRulJJtWR3c-zBD19HCqPZD0ffx4lGFhIyzFJQkZIzVfkhBE-1Ofims34yCOZUppnLNLFM81Om0VFSsxQi3G_J_0X_Y30DTM54-A</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zeng, Jin</creator><creator>Yang, Yang</creator><creator>Ma, Hui</creator><creator>Yang, Yiren</creator><creator>Fan, Chenguang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories</title><author>Zeng, Jin ; Yang, Yang ; Ma, Hui ; Yang, Yiren ; Fan, Chenguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a6eeadd800eed30171adea7d2c21be0d05a6b144791ea22011ad61e1512db323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bending</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Couplings</topic><topic>Dynamic characteristics</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Mindlin plates</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Rotating shafts</topic><topic>Rotors</topic><topic>Solid Mechanics</topic><topic>Timoshenko beams</topic><topic>Vibration mode</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Jin</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Yang, Yiren</creatorcontrib><creatorcontrib>Fan, Chenguang</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanics and materials in design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Jin</au><au>Yang, Yang</au><au>Ma, Hui</au><au>Yang, Yiren</au><au>Fan, Chenguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories</atitle><jtitle>International journal of mechanics and materials in design</jtitle><stitle>Int J Mech Mater Des</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>107</spage><epage>127</epage><pages>107-127</pages><issn>1569-1713</issn><eissn>1573-8841</eissn><abstract>Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been developed for the shaft-disk-blade coupling system using an in-house code that integrates the Timoshenko beam and Mindlin-Reissner shell elements. In addition, two critical issues concerning the couplings of the shaft-disk and disk-blade are successfully addressed by using the penalty method in conjunction with the compatibility equation of deformation. Subsequently, the improved modelling strategies for the shaft-disk coupling system, with and without blade components, are verified by comparing their static/dynamic frequencies and modal shapes with those obtained from experiments and solid models in ANSYS. The results indicate that the beam-shell hybrid model exhibits good accuracy and high efficiency in simulating the dynamic characteristics of the shaft-disk coupling system with and without blades. The modal characteristics of the entire rotor system have a series of flexible vibration modes, including bending/torsion/axial mode for the shaft, pitch diameter/umbrella-type mode for the disk, and bending mode for the blade.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10999-023-09664-7</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-1713
ispartof International journal of mechanics and materials in design, 2024-02, Vol.20 (1), p.107-127
issn 1569-1713
1573-8841
language eng
recordid cdi_proquest_journals_2920616503
source Springer Nature
subjects Bending
Characterization and Evaluation of Materials
Classical Mechanics
Couplings
Dynamic characteristics
Dynamic models
Engineering
Engineering Design
Mindlin plates
Model accuracy
Modelling
Rotating shafts
Rotors
Solid Mechanics
Timoshenko beams
Vibration mode
title Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20modelling%20strategy%20of%20a%20shaft-disk-blade%20coupling%20system%20integrating%20beam%20and%20shell%20theories&rft.jtitle=International%20journal%20of%20mechanics%20and%20materials%20in%20design&rft.au=Zeng,%20Jin&rft.date=2024-02-01&rft.volume=20&rft.issue=1&rft.spage=107&rft.epage=127&rft.pages=107-127&rft.issn=1569-1713&rft.eissn=1573-8841&rft_id=info:doi/10.1007/s10999-023-09664-7&rft_dat=%3Cproquest_cross%3E2920616503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-a6eeadd800eed30171adea7d2c21be0d05a6b144791ea22011ad61e1512db323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920616503&rft_id=info:pmid/&rfr_iscdi=true