Loading…
Influence of the Heat Treatment on the Layer JC of Internal-Sn Nb3Sn Wires With Internally Oxidized Nanoparticles
We evaluated various heat treatments (HT) for maximizing the Nb 3 Sn layer thickness while retaining a refined grain microstructure in low filament count internal-Sn Nb 3 Sn Rod-In-Tube wires with internally oxidized nanoparticles. These wires were manufactured in our laboratory using SnO 2 as oxyge...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-5 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We evaluated various heat treatments (HT) for maximizing the Nb 3 Sn layer thickness while retaining a refined grain microstructure in low filament count internal-Sn Nb 3 Sn Rod-In-Tube wires with internally oxidized nanoparticles. These wires were manufactured in our laboratory using SnO 2 as oxygen source and Nb alloys containing Ta and Zr or Hf. By reacting the wires at 650 °C for 200 hours we obtained relatively thin reaction layers but high layer critical current densities (layer J C ) of ∼3000 A/mm 2 for Hf-containing wires and ∼2700 A/mm 2 for Zr-containing wires, both at 4.2 K and 16 T. Notably, both of these values are over the layer J C threshold of 2500 A/mm 2 , which is estimated to be necessary for attaining the corresponding Future Circular Collider (FCC) target non-Cu J C of 1500 A/mm 2 . Following this heat treatment, the fine-grained Nb 3 Sn area occupies only ∼35% of the filament area for Hf-containing wires and ∼20% for Zr-containing wires. After heat treatments with a reaction step at 700 °C these values increase to 70-80% and ∼60%, respectively, with only a minor increase of the grain size. However, we observed a noticeable decrease in the layer J C for these HT. Magnetic measurements show that the high J C wires exhibit a point defect contribution from precipitates to the pinning force, which is missing in wires with depressed J C values. The higher heat treatment temperatures may have caused excessive coarsening of the oxide precipitates, to sizes unsuitable for flux pinning. Reaction heat treatment temperatures in the range of 650 °C to 700 °C and durations between 50 and 200 hours may provide a better compromise between the Nb 3 Sn layer thickness, its grain size and nanoparticle size. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2024.3355353 |