Loading…

Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories

Functional principal component analysis based on Karhunen Loeve expansion allows to describe the stochastic evolution of the main characteristics associated to multiple systems and devices. Identifying the probability distribution of the principal component scores is fundamental to characterize the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Authors: Ruiz-Castro, Juan E, Acal, Christian, Aguilera, Ana M, Aguilera-Morillo, M Carmen, Roldán, Juan B
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Functional principal component analysis based on Karhunen Loeve expansion allows to describe the stochastic evolution of the main characteristics associated to multiple systems and devices. Identifying the probability distribution of the principal component scores is fundamental to characterize the whole process. The aim of this work is to consider a family of statistical distributions that could be accurately adjusted to a previous transformation. Then, a new class of distributions, the linear-phase-type, is introduced to model the principal components. This class is studied in detail in order to prove, through the KL expansion, that certain linear transformations of the process at each time point are phase-type distributed. This way, the one-dimensional distributions of the process are in the same linear-phase-type class. Finally, an application to model the reset process associated with resistive memories is developed and explained.
ISSN:2331-8422
DOI:10.48550/arxiv.2402.04425