Loading…
Equivariant Grothendieck ring of a complete symmetric variety of minimal rank
We describe the G -equivariant Grothendieck ring of a regular compactification X of an adjoint symmetric space G / H of minimal rank. This extends the results of Brion and Joshua for the equivariant Chow ring of wonderful symmetric varieties of minimal rank in (Brion, M., Joshua, R. 13, 471–493 (200...
Saved in:
Published in: | Manuscripta mathematica 2024-03, Vol.173 (3-4), p.1099-1121 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe the
G
-equivariant Grothendieck ring of a regular compactification
X
of an adjoint symmetric space
G
/
H
of minimal rank. This extends the results of Brion and Joshua for the equivariant Chow ring of wonderful symmetric varieties of minimal rank in (Brion, M., Joshua, R. 13, 471–493 (2008)) and generalizes the results on the regular compactification of an adjoint semisimple group in (Uma, V. 12(2), 371-406 (2007)). |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-023-01495-2 |