Loading…

Equivariant Grothendieck ring of a complete symmetric variety of minimal rank

We describe the G -equivariant Grothendieck ring of a regular compactification X of an adjoint symmetric space G / H of minimal rank. This extends the results of Brion and Joshua for the equivariant Chow ring of wonderful symmetric varieties of minimal rank in (Brion, M., Joshua, R. 13, 471–493 (200...

Full description

Saved in:
Bibliographic Details
Published in:Manuscripta mathematica 2024-03, Vol.173 (3-4), p.1099-1121
Main Author: Uma, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe the G -equivariant Grothendieck ring of a regular compactification X of an adjoint symmetric space G / H of minimal rank. This extends the results of Brion and Joshua for the equivariant Chow ring of wonderful symmetric varieties of minimal rank in (Brion, M., Joshua, R. 13, 471–493 (2008)) and generalizes the results on the regular compactification of an adjoint semisimple group in (Uma, V. 12(2), 371-406 (2007)).
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-023-01495-2