Loading…
Current-Voltage Modeling of DRAM Cell Transistor Using Genetic Algorithm and Deep Learning
Accurate current-voltage (I-V) modeling based on the Berkeley short-channel insulated-gate field-effect transistor model (BSIM) is pivotal for integrated circuit simulation. However, the current BSIM model does not support a buried-channel-array transistor (BCAT), which is the structure of the state...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.23881-23886 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurate current-voltage (I-V) modeling based on the Berkeley short-channel insulated-gate field-effect transistor model (BSIM) is pivotal for integrated circuit simulation. However, the current BSIM model does not support a buried-channel-array transistor (BCAT), which is the structure of the state-of-the-art commercial dynamic random access memory (DRAM) cell transistor. In this work, we propose an intelligent I-V modeling technique that combines genetic algorithm (GA) and deep learning (DL). This hybrid technique facilitates both optimization of BSIM parameter and accurate I-V modeling, even for devices not originally supported by BSIM. Additionally, we extended application of the DL to model one of the principal degradation mechanisms of transistor, the hot-carrier degradation (HCD). The successful modeling results of I-V characteristic and device degradation demonstrated that devices not supported by BSIM can be accurately modeled for integrated circuit simulations. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2024.3357241 |