Loading…
Excitable FitzHugh-Nagumo model with cross-diffusion: close and far-from-equilibrium coherent structures
In this paper, we shall study the formation of stationary patterns for a reaction-diffusion system in which the FitzHugh-Nagumo (FHN) kinetics, in its excitable regime, is coupled to linear cross-diffusion terms. In (Gambino et al. in Excitable Fitzhugh-Nagumo model with cross-diffusion: long-range...
Saved in:
Published in: | Ricerche di matematica 2024, Vol.73 (Suppl 1), p.137-156 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we shall study the formation of stationary patterns for a reaction-diffusion system in which the FitzHugh-Nagumo (FHN) kinetics, in its excitable regime, is coupled to linear cross-diffusion terms. In (Gambino et al. in Excitable Fitzhugh-Nagumo model with cross-diffusion: long-range activation instabilities, 2023), we proved that the model supports the emergence of cross-Turing patterns, i.e., close-to-equilibrium structures occurring as an effect of cross-diffusion. Here, we shall construct the cross-Turing patterns close to equilibrium on 1-D and 2-D rectangular domains. Through this analysis, we shall show that the species are out-of-phase spatially distributed and derive the amplitude equations that govern the pattern dynamics close to criticality. Moreover, we shall classify the bifurcation in the parameter space, distinguishing between super-and sub-critical transitions. In the final part of the paper, we shall numerically investigate the impact of the cross-diffusion terms on large-amplitude pulse-like solutions existing outside the cross-Turing regime, showing their emergence also in the case of
lateral activation
and
short-range inhibition
. |
---|---|
ISSN: | 0035-5038 1827-3491 |
DOI: | 10.1007/s11587-023-00816-7 |