Loading…
Developing control systems to improve motion tracking of electro-hydraulic systems subjected to external load
In this study, a state-of-the-art methodology for controlling an electro-hydraulic system is proposed. The aim is to achieve superior position tracking performance comparable to that of an electro-hydraulic servo valve system. To achieve this, a suite of linear and nonlinear control techniques—inclu...
Saved in:
Published in: | International journal of dynamics and control 2024-03, Vol.12 (3), p.761-773 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a state-of-the-art methodology for controlling an electro-hydraulic system is proposed. The aim is to achieve superior position tracking performance comparable to that of an electro-hydraulic servo valve system. To achieve this, a suite of linear and nonlinear control techniques—including PID, LQR, sliding mode, model predictive control (MPC), and neural network MPC controllers—are designed and tested based on system dynamics approximation. The controllers are optimized to effectively address the challenges posed by various loads, uncertainties, nonlinearities, internal leakage, chattering, and overshooting in the electro-hydraulic system. The proposed approach is both practical and effective, as demonstrated by simulation and experimental results. Comparative analysis reveals that the neural network MPC controller exhibits exceptional tracking performance and stability, with a smooth response and quick settling time. |
---|---|
ISSN: | 2195-268X 2195-2698 |
DOI: | 10.1007/s40435-023-01228-z |