Loading…

Developing control systems to improve motion tracking of electro-hydraulic systems subjected to external load

In this study, a state-of-the-art methodology for controlling an electro-hydraulic system is proposed. The aim is to achieve superior position tracking performance comparable to that of an electro-hydraulic servo valve system. To achieve this, a suite of linear and nonlinear control techniques—inclu...

Full description

Saved in:
Bibliographic Details
Published in:International journal of dynamics and control 2024-03, Vol.12 (3), p.761-773
Main Authors: Khedr, Omar Hesham, Maged, Shady A., Al-Oufy, Affaf Khamis, Awad, Mohammed Ibrahim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-b3315501e259c66b1aa8d1adbb21b25162ffcafad0665c0f48ce4e947b346f2b3
cites cdi_FETCH-LOGICAL-c319t-b3315501e259c66b1aa8d1adbb21b25162ffcafad0665c0f48ce4e947b346f2b3
container_end_page 773
container_issue 3
container_start_page 761
container_title International journal of dynamics and control
container_volume 12
creator Khedr, Omar Hesham
Maged, Shady A.
Al-Oufy, Affaf Khamis
Awad, Mohammed Ibrahim
description In this study, a state-of-the-art methodology for controlling an electro-hydraulic system is proposed. The aim is to achieve superior position tracking performance comparable to that of an electro-hydraulic servo valve system. To achieve this, a suite of linear and nonlinear control techniques—including PID, LQR, sliding mode, model predictive control (MPC), and neural network MPC controllers—are designed and tested based on system dynamics approximation. The controllers are optimized to effectively address the challenges posed by various loads, uncertainties, nonlinearities, internal leakage, chattering, and overshooting in the electro-hydraulic system. The proposed approach is both practical and effective, as demonstrated by simulation and experimental results. Comparative analysis reveals that the neural network MPC controller exhibits exceptional tracking performance and stability, with a smooth response and quick settling time.
doi_str_mv 10.1007/s40435-023-01228-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2931328981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931328981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b3315501e259c66b1aa8d1adbb21b25162ffcafad0665c0f48ce4e947b346f2b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLR_wFPA82q-drs5Sv2EghcFbyHJTurW3U1N0mL76911pd48zcA878vwIHRByRUlZHYdBRE8zwjjGaGMldn-CE0YlXnGClkeH_by7RRNY1wRQhgVhAk5Qe0tbKHx67pbYuu7FHyD4y4maCNOHtftOvgt4Nan2nc4BW0_BtQ7DA3YHs_ed1XQm6a2h1zcmFV_g2pogK8EodMNbryuztGJ002E6e88Q6_3dy_zx2zx_PA0v1lkllOZMsM5zXNCgeXSFoWhWpcV1ZUxjBqW04I5Z7XTFSmK3BInSgsCpJgZLgrHDD9Dl2Nv__3nBmJSK78ZvoiKSU45K2VJe4qNlA0-xgBOrUPd6rBTlKjBrBrNqt6s-jGr9n2Ij6HYw90Swl_1P6lvmmJ_CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931328981</pqid></control><display><type>article</type><title>Developing control systems to improve motion tracking of electro-hydraulic systems subjected to external load</title><source>Springer Nature</source><creator>Khedr, Omar Hesham ; Maged, Shady A. ; Al-Oufy, Affaf Khamis ; Awad, Mohammed Ibrahim</creator><creatorcontrib>Khedr, Omar Hesham ; Maged, Shady A. ; Al-Oufy, Affaf Khamis ; Awad, Mohammed Ibrahim</creatorcontrib><description>In this study, a state-of-the-art methodology for controlling an electro-hydraulic system is proposed. The aim is to achieve superior position tracking performance comparable to that of an electro-hydraulic servo valve system. To achieve this, a suite of linear and nonlinear control techniques—including PID, LQR, sliding mode, model predictive control (MPC), and neural network MPC controllers—are designed and tested based on system dynamics approximation. The controllers are optimized to effectively address the challenges posed by various loads, uncertainties, nonlinearities, internal leakage, chattering, and overshooting in the electro-hydraulic system. The proposed approach is both practical and effective, as demonstrated by simulation and experimental results. Comparative analysis reveals that the neural network MPC controller exhibits exceptional tracking performance and stability, with a smooth response and quick settling time.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-023-01228-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Control ; Control and Systems Theory ; Controllers ; Dynamical Systems ; Engineering ; Hydraulic equipment ; Linear control ; Neural networks ; Nonlinear control ; Nonlinearity ; Predictive control ; Proportional integral derivative ; Servovalves ; Sliding mode control ; State-of-the-art reviews ; System dynamics ; Tracking control ; Vibration</subject><ispartof>International journal of dynamics and control, 2024-03, Vol.12 (3), p.761-773</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b3315501e259c66b1aa8d1adbb21b25162ffcafad0665c0f48ce4e947b346f2b3</citedby><cites>FETCH-LOGICAL-c319t-b3315501e259c66b1aa8d1adbb21b25162ffcafad0665c0f48ce4e947b346f2b3</cites><orcidid>0009-0009-9615-0591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Khedr, Omar Hesham</creatorcontrib><creatorcontrib>Maged, Shady A.</creatorcontrib><creatorcontrib>Al-Oufy, Affaf Khamis</creatorcontrib><creatorcontrib>Awad, Mohammed Ibrahim</creatorcontrib><title>Developing control systems to improve motion tracking of electro-hydraulic systems subjected to external load</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>In this study, a state-of-the-art methodology for controlling an electro-hydraulic system is proposed. The aim is to achieve superior position tracking performance comparable to that of an electro-hydraulic servo valve system. To achieve this, a suite of linear and nonlinear control techniques—including PID, LQR, sliding mode, model predictive control (MPC), and neural network MPC controllers—are designed and tested based on system dynamics approximation. The controllers are optimized to effectively address the challenges posed by various loads, uncertainties, nonlinearities, internal leakage, chattering, and overshooting in the electro-hydraulic system. The proposed approach is both practical and effective, as demonstrated by simulation and experimental results. Comparative analysis reveals that the neural network MPC controller exhibits exceptional tracking performance and stability, with a smooth response and quick settling time.</description><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Controllers</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Hydraulic equipment</subject><subject>Linear control</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinearity</subject><subject>Predictive control</subject><subject>Proportional integral derivative</subject><subject>Servovalves</subject><subject>Sliding mode control</subject><subject>State-of-the-art reviews</subject><subject>System dynamics</subject><subject>Tracking control</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWLR_wFPA82q-drs5Sv2EghcFbyHJTurW3U1N0mL76911pd48zcA878vwIHRByRUlZHYdBRE8zwjjGaGMldn-CE0YlXnGClkeH_by7RRNY1wRQhgVhAk5Qe0tbKHx67pbYuu7FHyD4y4maCNOHtftOvgt4Nan2nc4BW0_BtQ7DA3YHs_ed1XQm6a2h1zcmFV_g2pogK8EodMNbryuztGJ002E6e88Q6_3dy_zx2zx_PA0v1lkllOZMsM5zXNCgeXSFoWhWpcV1ZUxjBqW04I5Z7XTFSmK3BInSgsCpJgZLgrHDD9Dl2Nv__3nBmJSK78ZvoiKSU45K2VJe4qNlA0-xgBOrUPd6rBTlKjBrBrNqt6s-jGr9n2Ij6HYw90Swl_1P6lvmmJ_CQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Khedr, Omar Hesham</creator><creator>Maged, Shady A.</creator><creator>Al-Oufy, Affaf Khamis</creator><creator>Awad, Mohammed Ibrahim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-9615-0591</orcidid></search><sort><creationdate>20240301</creationdate><title>Developing control systems to improve motion tracking of electro-hydraulic systems subjected to external load</title><author>Khedr, Omar Hesham ; Maged, Shady A. ; Al-Oufy, Affaf Khamis ; Awad, Mohammed Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b3315501e259c66b1aa8d1adbb21b25162ffcafad0665c0f48ce4e947b346f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Controllers</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Hydraulic equipment</topic><topic>Linear control</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinearity</topic><topic>Predictive control</topic><topic>Proportional integral derivative</topic><topic>Servovalves</topic><topic>Sliding mode control</topic><topic>State-of-the-art reviews</topic><topic>System dynamics</topic><topic>Tracking control</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Khedr, Omar Hesham</creatorcontrib><creatorcontrib>Maged, Shady A.</creatorcontrib><creatorcontrib>Al-Oufy, Affaf Khamis</creatorcontrib><creatorcontrib>Awad, Mohammed Ibrahim</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khedr, Omar Hesham</au><au>Maged, Shady A.</au><au>Al-Oufy, Affaf Khamis</au><au>Awad, Mohammed Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing control systems to improve motion tracking of electro-hydraulic systems subjected to external load</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>12</volume><issue>3</issue><spage>761</spage><epage>773</epage><pages>761-773</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>In this study, a state-of-the-art methodology for controlling an electro-hydraulic system is proposed. The aim is to achieve superior position tracking performance comparable to that of an electro-hydraulic servo valve system. To achieve this, a suite of linear and nonlinear control techniques—including PID, LQR, sliding mode, model predictive control (MPC), and neural network MPC controllers—are designed and tested based on system dynamics approximation. The controllers are optimized to effectively address the challenges posed by various loads, uncertainties, nonlinearities, internal leakage, chattering, and overshooting in the electro-hydraulic system. The proposed approach is both practical and effective, as demonstrated by simulation and experimental results. Comparative analysis reveals that the neural network MPC controller exhibits exceptional tracking performance and stability, with a smooth response and quick settling time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-023-01228-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0009-9615-0591</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2024-03, Vol.12 (3), p.761-773
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2931328981
source Springer Nature
subjects Complexity
Control
Control and Systems Theory
Controllers
Dynamical Systems
Engineering
Hydraulic equipment
Linear control
Neural networks
Nonlinear control
Nonlinearity
Predictive control
Proportional integral derivative
Servovalves
Sliding mode control
State-of-the-art reviews
System dynamics
Tracking control
Vibration
title Developing control systems to improve motion tracking of electro-hydraulic systems subjected to external load
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20control%20systems%20to%20improve%20motion%20tracking%20of%20electro-hydraulic%20systems%20subjected%20to%20external%20load&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Khedr,%20Omar%20Hesham&rft.date=2024-03-01&rft.volume=12&rft.issue=3&rft.spage=761&rft.epage=773&rft.pages=761-773&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-023-01228-z&rft_dat=%3Cproquest_cross%3E2931328981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b3315501e259c66b1aa8d1adbb21b25162ffcafad0665c0f48ce4e947b346f2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931328981&rft_id=info:pmid/&rfr_iscdi=true