Loading…
The connective -theory of the Eilenberg–MacLane space
We compute $ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ and $ku_*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$ , the connective $KU$ -cohomology and connective $KU$ -homology groups of the mod- $p$ Eilenberg–MacLane space $K\!\left({\mathbb{Z}}_p,2\right)$ , using the Adams spectral sequence...
Saved in:
Published in: | Glasgow mathematical journal 2024-01, Vol.66 (1), p.1-33 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We compute
$ku^*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$
and
$ku_*\left(K\!\left({\mathbb{Z}}_p,2\right)\right)$
, the connective
$KU$
-cohomology and connective
$KU$
-homology groups of the mod-
$p$
Eilenberg–MacLane space
$K\!\left({\mathbb{Z}}_p,2\right)$
, using the Adams spectral sequence. We obtain a striking interaction between
$h_0$
-extensions and exotic extensions. The mod-
$p$
connective
$KU$
-cohomology groups, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089523000423 |