Loading…

Quantifying the Infiltration Capacity of High-Turbidity Rivers Under the Conditions of Fine Particle Clogging and Resuspension

Clogging and resuspension of fine particles in high-turbidity rivers affect riverbed infiltration capacity and limit aquifer recharge. This study simulated these two processes on riverbeds with different particle compositions through column experiments, and assessed the riverbed infiltration rate bo...

Full description

Saved in:
Bibliographic Details
Published in:Water resources management 2024-03, Vol.38 (4), p.1437-1451
Main Authors: Liu, Congmin, Pan, Chengzhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Clogging and resuspension of fine particles in high-turbidity rivers affect riverbed infiltration capacity and limit aquifer recharge. This study simulated these two processes on riverbeds with different particle compositions through column experiments, and assessed the riverbed infiltration rate both before and after clogging and after resuspension. Results showed that in most river sections, viscous fine particles will form internal clogging only within a depth of 30 cm, and this process will reach stability within 2 h. The riverbed infiltration rate after clogging is only 1.15%–37.50% of that before clogging. When river flow velocity exceeds 23.1–34.9 cm/s, the viscous cake layer on the riverbed will be resuspended. After resuspension, the riverbed infiltration rate can be restored to 2.13%–93.01% of that before clogging. On this basis, principal component analysis was used to screen the variables that describe particle composition, and multiple linear regression was used to construct separate quantitative relationships for the infiltration rate, its attenuation degree, and its recoverability with particle composition (represented by median particle size and curvature coefficient). The findings of this study are of great importance for further elucidating the infiltration capacity of high-turbidity rivers and provide reference value for the calculation of river leakage loss and groundwater recharge.
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-023-03729-0