Loading…
Orbital stability of the sum of N peakons for the mCH-Novikov equation
This paper investigates a generalized Camassa-Holm equation with cubic nonlinearities (alias the mCH-Novikov equation), which is a generalization of some special equations. The mCH-Novikov equation possesses well-known peaked solitary waves that are called peakons. The peakons were proved orbital st...
Saved in:
Published in: | Applicable analysis 2024-03, Vol.103 (5), p.874-897 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates a generalized Camassa-Holm equation with cubic nonlinearities (alias the mCH-Novikov equation), which is a generalization of some special equations. The mCH-Novikov equation possesses well-known peaked solitary waves that are called peakons. The peakons were proved orbital stable by Chen et al. in [Stability of peaked solitary waves for a class of cubic quasilinear shallow-water equations. Int Math Res Not. 2022;1-33]. We mainly prove the orbital stability of the multi-peakons in the mCH-Novikov equation. In this paper, it is proved that the sum of N fully decoupled peaks is orbitally stable in the energy space by using energy argument, combining the orbital stability of single peakons and local monotonicity of the method. |
---|---|
ISSN: | 0003-6811 1563-504X |
DOI: | 10.1080/00036811.2023.2210600 |