Loading…
Data-driven Stochastic Programming with Distributionally Robust Constraints Under Wasserstein Distance: Asymptotic Properties
Distributionally robust optimization is a dominant paradigm for decision-making problems where the distribution of random variables is unknown. We investigate a distributionally robust optimization problem with ambiguities in the objective function and countably infinite constraints. The ambiguity s...
Saved in:
Published in: | Journal of the Operations Research Society of China (Internet) 2021-09, Vol.9 (3), p.525-542 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distributionally robust optimization is a dominant paradigm for decision-making problems where the distribution of random variables is unknown. We investigate a distributionally robust optimization problem with ambiguities in the objective function and countably infinite constraints. The ambiguity set is defined as a Wasserstein ball centered at the empirical distribution. Based on the concentration inequality of Wasserstein distance, we establish the asymptotic convergence property of the data-driven distributionally robust optimization problem when the sample size goes to infinity. We show that with probability 1, the optimal value and the optimal solution set of the data-driven distributionally robust problem converge to those of the stochastic optimization problem with true distribution. Finally, we provide numerical evidences for the established theoretical results. |
---|---|
ISSN: | 2194-668X 2194-6698 |
DOI: | 10.1007/s40305-020-00313-w |