Loading…
Deep Neural Network and GAN-Based Reversible Data Hiding in Encrypted Images: A Privacy-Preserving Approach
In light of recent incidents involving the leakage of private photographs of Hollywood celebrities from iCloud, the need for robust methods to safeguard image content has gained paramount importance. This paper addresses this concern by introducing a novel framework for reversible image editing (RIT...
Saved in:
Published in: | SN computer science 2024-01, Vol.5 (1), p.45, Article 45 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In light of recent incidents involving the leakage of private photographs of Hollywood celebrities from iCloud, the need for robust methods to safeguard image content has gained paramount importance. This paper addresses this concern by introducing a novel framework for reversible image editing (RIT) supported by reversible data hiding with encrypted images (RDH-EI) techniques. Unlike traditional approaches vulnerable to hacking, this framework ensures both efficient and secure data embedding while maintaining the original image’s privacy. The framework leverages two established methods: secret writing and knowledge activity. While secret writing is susceptible to hacking due to the complex nature of cipher languages, RDH-EI-supported RIT adopts a more secure approach. It replaces the linguistic content of the original image with the semantics of a different image, rendering the encrypted image visually indistinguishable from a plaintext image. This novel substitution prevents cloud servers from detecting encrypted data, enabling the adoption of reversible data hiding (RDH) methods designed for plaintext images. The proposed framework offers several distinct advantages. Firstly, it ensures the confidentiality of sensitive information by concealing the linguistic content of the original image. Secondly, it supports reversible image editing, enabling the restoration of the original image from the encrypted version without any loss of data. Lastly, the integration of RDH techniques designed for plaintext images empowers the cloud server to embed supplementary data while preserving image quality. Incorporating convolutional neural network (CNN) and generative adversarial network (GAN) models, the framework ensures accurate data extraction and high-quality image restoration. The applications of this concealed knowledge are vast, spanning law enforcement, medical data privacy, and military communication. By addressing limitations of previous methods, it opens new avenues for image manipulation and secure data transmission. This research not only contributes a practical solution but also sets a benchmark for advancing the security and privacy paradigms in image-related technologies. |
---|---|
ISSN: | 2661-8907 2662-995X 2661-8907 |
DOI: | 10.1007/s42979-023-02347-2 |