Loading…
FLS-based AHOSM control for driverless vehicle steering system with parameter uncertainty
This paper aims to address the tracking control problem for the steer-by-wire (SbW) system with uncertain nonlinearity and parameter uncertainty. First, the adaptive fuzzy logic system (FLS) is constructed to realize the intelligent modeling of the SbW system. In addition, an adaptive higher-order s...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Part D: Journal of Automobile Engineering, 2024-03, Vol.238 (4), p.591-606 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper aims to address the tracking control problem for the steer-by-wire (SbW) system with uncertain nonlinearity and parameter uncertainty. First, the adaptive fuzzy logic system (FLS) is constructed to realize the intelligent modeling of the SbW system. In addition, an adaptive higher-order sliding mode (AHOSM) control with dynamic gain is designed to overcome the lumped uncertainties including inaccurate model-parameter and fuzzy logic system approximation error, and has the advantage of eliminating the gain-overestimation phenomenon effectively without the prior knowledge about the bounds of approximation error and parameter uncertainty. Furthermore, theoretical analysis based on Lyapunov stability theory is provided to verify that the real sliding mode can be established. Finally, simulations and vehicle experiments are given to evaluate the effectiveness and superiority of the proposed methods. |
---|---|
ISSN: | 0954-4070 2041-2991 |
DOI: | 10.1177/09544070221138333 |