Loading…
Combination of Weak Learners eXplanations to Improve Random Forest eXplicability Robustness
The notion of robustness in XAI refers to the observed variations in the explanation of the prediction of a learned model with respect to changes in the input leading to that prediction. Intuitively, if the input being explained is modified slightly subtly enough so as to not change the prediction o...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The notion of robustness in XAI refers to the observed variations in the explanation of the prediction of a learned model with respect to changes in the input leading to that prediction. Intuitively, if the input being explained is modified slightly subtly enough so as to not change the prediction of the model too much, then we would expect that the explanation provided for that new input does not change much either. We argue that a combination through discriminative averaging of ensembles weak learners explanations can improve the robustness of explanations in ensemble methods.This approach has been implemented and tested with post-hoc SHAP method and Random Forest ensemble with successful results. The improvements obtained have been measured quantitatively and some insights into the explicability robustness in ensemble methods are presented. |
---|---|
ISSN: | 2331-8422 |