Loading…
On stability for generalized linear differential equations and applications to impulsive systems
In this paper, we are interested in investigating notions of stability for generalized linear differential equations (GLDEs). Initially, we propose and revisit several definitions of stability and provide a complete characterization of them in terms of upper bounds and asymptotic behaviour of the tr...
Saved in:
Published in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2024-04, Vol.154 (2), p.381-407 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we are interested in investigating notions of stability for generalized linear differential equations (GLDEs). Initially, we propose and revisit several definitions of stability and provide a complete characterization of them in terms of upper bounds and asymptotic behaviour of the transition matrix. In addition, we illustrate our stability results for GLDEs to linear periodic systems and linear impulsive differential equations. Finally, we prove that the well-known definitions of uniform asymptotic stability and variational asymptotic stability are equivalent to the global uniform exponential stability introduced in this article. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/prm.2023.13 |