Loading…

Effect of Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Processed Ni–Fe-Based Superalloy

In this work, friction stir processing (FSP) was applied to the high-strength and high-melting-point Ni–Fe-based superalloy (HT700) for the first time with negligible wear of the stir tool. Different rotation rates were chosen to investigate the effect of heat input on microstructure and tensile pro...

Full description

Saved in:
Bibliographic Details
Published in:Acta metallurgica sinica : English letters 2021-10, Vol.34 (10), p.1407-1420
Main Authors: Wang, Miao, Huang, Xing-Wei, Xue, Peng, Cui, Chuan-Yong, Zhang, Qing-Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, friction stir processing (FSP) was applied to the high-strength and high-melting-point Ni–Fe-based superalloy (HT700) for the first time with negligible wear of the stir tool. Different rotation rates were chosen to investigate the effect of heat input on microstructure and tensile properties at different temperatures of friction stir processed Ni–Fe-based superalloy. The results showed that with increasing rotation rate, the percentage of high-angle grain boundaries and twin boundaries gradually decreased whereas the grain size initially increased and then remained almost constant; the difference in tensile properties of FSP samples with rotation rates of 500–700 rpm was small attributing to their similar grain size, but the maximum strength was achieved in the FSP sample with a rotation rate of 400 rpm and traverse speed of 50 mm/min due to its finest grain size. More importantly, we found that the yield strength of all FSP samples tensioned at 700 °C was enhanced clearly resulting from the reprecipitation of γ′ phase. In addition, the grain refinement mechanism of HT700 alloy during FSP was proved to be continuous dynamic recrystallization and the specific refinement process was given.
ISSN:1006-7191
2194-1289
DOI:10.1007/s40195-021-01240-2