Loading…
Switching the Loss Reduces the Cost in Batch (Offline) Reinforcement Learning
We propose training fitted Q-iteration with log-loss (FQI-log) for batch reinforcement learning (RL). We show that the number of samples needed to learn a near-optimal policy with FQI-log scales with the accumulated cost of the optimal policy, which is zero in problems where acting optimally achieve...
Saved in:
Published in: | arXiv.org 2024-08 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose training fitted Q-iteration with log-loss (FQI-log) for batch reinforcement learning (RL). We show that the number of samples needed to learn a near-optimal policy with FQI-log scales with the accumulated cost of the optimal policy, which is zero in problems where acting optimally achieves the goal and incurs no cost. In doing so, we provide a general framework for proving small-cost bounds, i.e. bounds that scale with the optimal achievable cost, in batch RL. Moreover, we empirically verify that FQI-log uses fewer samples than FQI trained with squared loss on problems where the optimal policy reliably achieves the goal. |
---|---|
ISSN: | 2331-8422 |