Loading…
An Attraction-Repulsion Chemotaxis System: The Roles of Nonlinear Diffusion and Productions
This article considers the no-flux attraction-repulsion chemotaxis model { u t = ∇ ⋅ ( ( u + 1 ) m 1 − 1 ∇ u − χ u ( u + 1 ) m 2 − 2 ∇ v + ξ u ( u + 1 ) m 3 − 2 ∇ w ) , x ∈ Ω , t > 0 , 0 = Δ v + f ( u ) − β v , x ∈ Ω , t > 0 , 0 = Δ w + g ( u ) − δ w , x ∈ Ω , t > 0 defined in a smooth and...
Saved in:
Published in: | Acta applicandae mathematicae 2024-04, Vol.190 (1), p.5, Article 5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article considers the no-flux attraction-repulsion chemotaxis model
{
u
t
=
∇
⋅
(
(
u
+
1
)
m
1
−
1
∇
u
−
χ
u
(
u
+
1
)
m
2
−
2
∇
v
+
ξ
u
(
u
+
1
)
m
3
−
2
∇
w
)
,
x
∈
Ω
,
t
>
0
,
0
=
Δ
v
+
f
(
u
)
−
β
v
,
x
∈
Ω
,
t
>
0
,
0
=
Δ
w
+
g
(
u
)
−
δ
w
,
x
∈
Ω
,
t
>
0
defined in a smooth and bounded domain
Ω
⊂
R
n
(
n
≥
2
) with
m
1
,
m
2
,
m
3
∈
R
,
χ
,
ξ
,
β
,
δ
>
0
. The functions
f
(
u
)
,
g
(
u
)
extend the prototypes
f
(
u
)
=
α
u
s
and
g
(
u
)
=
γ
u
r
with
α
,
γ
>
0
and suitable
s
,
r
>
0
for all
u
≥
0
. Our main result exhibits that there exists
M
∗
>
0
such that for all properly regular initial data, the studied model admits a unique classical solution which remains bounded if
m
2
+
s
<
m
3
+
r
or
m
2
+
s
=
m
3
+
r
and
ξ
γ
χ
α
>
M
∗
. |
---|---|
ISSN: | 0167-8019 1572-9036 |
DOI: | 10.1007/s10440-024-00641-6 |