Loading…

An Attraction-Repulsion Chemotaxis System: The Roles of Nonlinear Diffusion and Productions

This article considers the no-flux attraction-repulsion chemotaxis model { u t = ∇ ⋅ ( ( u + 1 ) m 1 − 1 ∇ u − χ u ( u + 1 ) m 2 − 2 ∇ v + ξ u ( u + 1 ) m 3 − 2 ∇ w ) , x ∈ Ω , t > 0 , 0 = Δ v + f ( u ) − β v , x ∈ Ω , t > 0 , 0 = Δ w + g ( u ) − δ w , x ∈ Ω , t > 0 defined in a smooth and...

Full description

Saved in:
Bibliographic Details
Published in:Acta applicandae mathematicae 2024-04, Vol.190 (1), p.5, Article 5
Main Authors: Jiao, Zhan, Jadlovská, Irena, Li, Tongxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article considers the no-flux attraction-repulsion chemotaxis model { u t = ∇ ⋅ ( ( u + 1 ) m 1 − 1 ∇ u − χ u ( u + 1 ) m 2 − 2 ∇ v + ξ u ( u + 1 ) m 3 − 2 ∇ w ) , x ∈ Ω , t > 0 , 0 = Δ v + f ( u ) − β v , x ∈ Ω , t > 0 , 0 = Δ w + g ( u ) − δ w , x ∈ Ω , t > 0 defined in a smooth and bounded domain Ω ⊂ R n ( n ≥ 2 ) with m 1 , m 2 , m 3 ∈ R , χ , ξ , β , δ > 0 . The functions f ( u ) , g ( u ) extend the prototypes f ( u ) = α u s and g ( u ) = γ u r with α , γ > 0 and suitable s , r > 0 for all u ≥ 0 . Our main result exhibits that there exists M ∗ > 0 such that for all properly regular initial data, the studied model admits a unique classical solution which remains bounded if m 2 + s < m 3 + r or m 2 + s = m 3 + r and ξ γ χ α > M ∗ .
ISSN:0167-8019
1572-9036
DOI:10.1007/s10440-024-00641-6